
A Weather Ontology for Predictive
Control in Smart Homes

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Paul Staroch
Matrikelnummer 0425426

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Mario Kofler

Wien, 29.08.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

A Weather Ontology for Predictive
Control in Smart Homes

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Paul Staroch
Registration Number 0425426

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Dipl.-Ing. Mario Kofler

Vienna, 29.08.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Paul Staroch
Graf Starhemberg-Gasse 5, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
– einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 29.08.2013

Paul Staroch

i

Acknowledgements

I want to thank everyone who has worked in the field of Semantic Web and worked on countless
projects, articles, and books which form the foundations that made this thesis possible at all.

I wish to acknowledge Prof. Dr. Wolfgang Kastner and Dipl.-Ing. Mario Kofler for the
supervision of this thesis and the opportunity to write the thesis at the Automation Systems Group
of the Institute of Computer Aided Automation at the Vienna University of Technology.

Credit goes to the Norwegian Meteorological Institute for providing an easy-to-use API for
weather data under a Creative Commons License.

Furthermore, I want to thank everyone who provided input to some part of this thesis.
I am particularly grateful to everyone among my relatives, friends, and acquaintances who

have supported me emotionally and, most notably, kept asking me about the progress of this
thesis which often motivated me to carry on the work.

iii

Abstract

In the past few years, the idea of creating smart homes has gained popularity. A smart home
possesses some kind of intelligence that allows it to support its inhabitants. The overall goal is to
increase the inhabitants’ comfort while energy use and costs are reduced as well.

In the context of a project aimed at building smart home systems, this thesis aims at construct-
ing an OWL ontology for weather information, containing data about both current conditions and
weather forecasts. The data described by this ontology will enable smart home systems to make
decisions based on current and future weather conditions.

At first, the thesis will determine in which particular ways weather data can be used within
smart homes. Furthermore, possible sources for weather data will be analysed. Primary sources
will be weather services that are that are accessible via Internet. Optionally, local weather stations
will be able to provide further data about current weather conditions. A set of Internet-based
sources for weather data will be reviewed for their suitability for use within smart homes.

Afterwards, existing ontologies will be reviewed for their structure, advantages, and disad-
vantages in order to acquire ideas being suitable to be re-used. Several well-known approaches
for building new ontologies from scratch will be discussed in detail.

The thesis will follow METHONTOLOGY , the best-fitting of these approaches, to build
SmartHomeWeather, an OWL ontology that covers both the weather data being available and the
concepts required to perform weather-related tasks within smart homes while always keeping the
possibility of simple and efficient OWL reasoning in mind.

Eventually, Weather Importer, a Java application, will be developed that gathers data from
weather services and local weather stations and transforms it to comply with the SmartHome-
Weather ontology.

v

Kurzfassung

In den vergangenen Jahren hat die Idee des intelligenten Wohnens zunehmend an Bedeutung
gewonnen. Ein intelligenter Wohnraum (ein Smart Home) verfügt über eine Art Intelligenz, die
es ihm ermöglicht, seinen BewohnerInnen Tätigkeiten abzunehmen. Das Ziel ist, den Bewoh-
nerInnen mehr Komfort zu bieten und gleichzeitig Energieverbrauch und Kosten zu senken.

Im Kontext eines Projekts, welches die Entwicklung von Smart Homes zum Ziel hat, wird in
dieser Masterarbeit eine OWL-Ontologie für Wetterinformation entworfen, die Daten sowohl über
die aktuelle Wetterlage als auch über Vorhersagen enthält. Die von dieser Ontologie beschriebenen
Daten werden es Smart Home-Systemen ermöglichen, Entscheidungen auf Basis der aktuellen
und der zukünftigen Wetterverhältnisse zu treffen.

Zunächst wird die Masterarbeit untersuchen, auf welche Art und Weise Wetterdaten in Smart
Homes verwendet werden können. Weiters werden mögliche Quellen für Wetterdaten analysiert.
Die wichtigsten Quellen werden über das Internet abrufbare Wetterdienste sein; optional können
lokale Wetterstationen weitere Daten über die aktuelle Wetterlage zur Verfügung stellen. Eine
Auswahl an über das Internet verfügbaren Quellen für Wetterdaten wird hinsichtlich ihrer Eignung
zur Verwendung in Smart Homes untersucht.

Anschließend werden bereits existierende Ontologien bezüglich ihrer Struktur, ihren Vorteilen
und ihren Nachteilen untersucht, um Ideen zu sammeln, die wiederverwendet werden können.
Einige bekannte Verfahren, um neue Ontologien von Grund auf zu erstellen, werden im Detail
erläutert.

Die Arbeit wird METHONTOLOGY , das von diesen Verfahren am besten geeignete, verwen-
den, um SmartHomeWeather zu entwerfen, eine OWL-Ontologie, die sowohl die zur Verfügung
stehenden Wetterdaten abdeckt als auch die Konzepte, die notwendig sind, um in Smart Homes
wetterbezogene Aufgaben zu erledigen; gleichzeitig wird darauf geachtet, einfaches und effizien-
tes OWL-Reasoning zu ermöglichen.

Schließlich wird Weather Importer entwickelt, eine Java-Applikation, die Daten von Wetter-
diensten und lokalen Wetterstationen abruft und sie so transformiert, dass sie mit der SmartHome-
Weather-Ontologie verwendet werden können.

vii

Contents

Acknowledgements iii

Abstract v

Kurzfassung vii

Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement and goal . 3
1.3 Methodological approach . 4
1.4 Outline . 4

2 Existing work 7
2.1 Foundations . 7

2.1.1 Ontologies . 7
2.1.2 OWL . 10

2.2 ThinkHome . 14
2.3 Ontologies for weather data . 15

2.3.1 Semantic Sensor Web . 16
2.3.2 SSN Ontology . 17
2.3.3 SWEET . 17
2.3.4 NextGen . 19

2.4 Related ontologies . 19
2.4.1 Location data . 20
2.4.2 Date and time . 20
2.4.3 Units of measurements . 21

2.5 Conclusion . 24

3 Weather data 25
3.1 Weather information . 25
3.2 Sensor data . 27

3.2.1 Fieldbus systems . 27

ix

x CONTENTS

3.2.2 KNX sensors . 27
3.3 Service data . 28

3.3.1 Available Internet services . 28
3.3.2 Summary . 32

3.4 Weather data API of yr.no . 33
3.5 Position of the sun . 38
3.6 Conclusion . 38

4 Methodologies for developing ontologies 41
4.1 Evaluating ontology development methodologies 42
4.2 The ontology development approaches . 43

4.2.1 Methodology by Uschold and King 43
Description . 43
Applications . 44
Analysis . 44

4.2.2 Methodology by Grüninger and Fox (TOVE) 45
Description . 45
Applications . 46
Analysis . 46

4.2.3 Ontology 101 . 47
Description . 47
Applications . 47
Analysis . 48

4.2.4 The UPON methodology . 49
Description . 49
Applications . 50
Analysis . 50

4.2.5 METHONTOLOGY . 51
Description . 51
Applications . 52
Analysis . 52

4.2.6 Summary . 52
4.3 METHONTOLOGY . 53

4.3.1 Ontology development process and life cycle 54
4.3.2 The METHONTOLOGY approach . 55

Specification . 55
Knowledge Acquisition . 55
Conceptualisation . 55
Formalisation . 60
Integration . 60
Implementation . 60
Evaluation . 61
Documentation . 61

CONTENTS xi

Maintenance . 62
4.4 Conclusion . 62

5 The SmartHomeWeather ontology 63
5.1 Conventions . 64
5.2 Specification . 65
5.3 Knowledge Acquisition . 67
5.4 Conceptualisation . 67

5.4.1 Glossary of Terms . 68
5.4.2 Concept-classification trees . 70

Weather condition . 70
Weather phenomenon . 70
Weather report . 75
Weather source . 76
Weather state . 76

5.4.3 Binary relations diagram . 82
5.4.4 Concept dictionaries . 82
5.4.5 Binary relations table . 83
5.4.6 Instance attributes table . 83
5.4.7 Class attributes table . 83
5.4.8 Instances table . 83

5.5 Integration . 83
5.6 Implementation . 84

5.6.1 Imported ontologies . 84
5.6.2 Reasoning . 87

5.7 Evaluation . 90
5.7.1 Non-functional requirements . 90
5.7.2 Functional requirements . 90

5.8 SPARQL and SWRL . 92
5.8.1 Maximum and minimum values . 92
5.8.2 Weather states satisfying certain conditions 93
5.8.3 Rising and falling values of weather phenomena over time 94

6 The Weather Importer 97
6.1 The data model . 97
6.2 The application . 100

6.2.1 fetch mode . 101
6.2.2 timestamps mode . 102
6.2.3 remove mode . 104
6.2.4 turtle mode . 104

6.3 Unit tests . 105

7 Conclusion 107
7.1 Summary . 107

xii CONTENTS

7.2 Outlook . 109
7.2.1 Shortcomings in the current version 109
7.2.2 Further uses of data provided by SmartHomeWeather 110

A Tables and listings 111
A.1 Conceptualisation tables for SmartHomeWeather 111
A.2 Output of Weather Importer in Turtle syntax 120

B Glossary 125

C Acronyms 141

List of Figures 145

List of Tables 147

List of Listings 149

Bibliography 151

CHAPTER 1
Introduction

1.1 Motivation

Over the recent years, the idea of designing and building smart homes has gained increasing
popularity. A smart home can be seen as a building being equipped with some kind of intelligence
which enables the building to support its inhabitants. For instance, a smart home can take control
of the HVAC (heating, ventilation, and air conditioning) system of a building. Instead of the
inhabitants having to care about maintaining an appropriate room temperature and the supply of a
sufficient amount of fresh air, the smart home itself may manage these tasks automatically on its
own. Moreover, a smart home may adjust indoor illumination and outdoor lighting, control home
entertainment systems, or monitor the building’s state for unusual activity. The list of possible
applications of smart homes is endless.

According to the Intertek Research & Testing Centre [1] which carried out a smart home
project named DTI Smart Home Project, a smart home is “a dwelling incorporating a communi-
cations network that connects the key electrical appliances and services, and allows them to be
remotely controlled, monitored, or accessed. Remotely in this context can mean both within the
dwelling and from outside the dwelling” [2, 3]. The overall objectives that can be targeted using
that approach are diverse: For instance, smart homes may be aimed at increasing their inhabitants’
comfort or at reducing the overall energy consumption without any loss of comfort.

The areas served by smart home systems can be categorised into six categories: Environment
(HVAC, water management, lighting, energy management, metering), security (alarms, mo-
tions detectors, environmental detectors), home entertainment (audiovisual equipment, Internet),
domestic appliances (cooking, cleaning, maintenance alerts), information and communication
(phone, Internet), and health (telecare, home assistance).

In order to fulfil its purpose, a smart home requires three elements: Intelligent control,
home automation products, and an internal network. Intelligent control represents a gateway for
managing the systems. Home automation products are components distributed in the building that
either monitor or measure physical states (via sensors), perform certain actions (via actuators),
or both. Examples for sensors are thermometers, microphones, cameras, or motion detectors;

1

2 CHAPTER 1. INTRODUCTION

actuators may be switches, dimmers, room temperature controllers, or window blind actuators.
All components are connected using an internal network that is used by sensors to report their
measurements and by actuators to receive their command inputs.

As smart homes comprise a large field of research and development, there exist several
projects that are aimed at developing infrastructures for smart homes. Some of these projects are:

• Mozer’s adaptive house: The Adaptive House is an approach that is based on continuous
monitoring the building’s inhabitants regarding what actions they take and when. Based on
observations collected over a certain period of time, the Adaptive House tries to predict the
inhabitants’ behaviour in order to perform monitored actions (e.g. controlling the building’s
illumination) automatically. [4]

• Georgia Tech Aware Home: The Georgia Tech Aware Home is centred around a pre-
defined set of use cases that are part of various scenarios such as busy families, ageing in
place, or children with special needs. Throughout the building, monitors, input interfaces
etc. are placed which provide assistance to the inhabitants. The Tech Aware Home is a
rather static approach that does not include the idea of learning from the inhabitants. [5]

• Gator Tech Smart Home: The Gator Tech Smart Home is an approach geared towards
simplified evolution of the home regarding the addition of new technologies and modifica-
tions to existing application domains. The goal is the creation of assisted environments that
utilise available sensors and actuators to improve the building’s inhabitants’ comfort and to
take routine work away from them. [6]

• eHome: eHome is a project implemented for research purposes in a two-room apartment
that is equipped with actuators for tasks like turning light on and off, moving curtains etc.
Three user interfaces (laptop, TV set, and mobile phone) are available for performing the
available tasks. eHome is not a “smart home” in the strict sense, instead “automated home”
is a better suitable term. [7]

• House_n: MIT’s House_n is an approach based on what its designers call “subtle re-
minders”. By the inhabitants’ current behaviour, the system tries to predict what they
are about to do. Based on these predictions and measurement data from various sensors,
House_n provides support in terms of textual hints and images which are presented on sim-
ple displays mounted on windows, doors, cupboards, etc. House_n intentionally abstains
from the use of any actuators to not patronise its inhabitants. [8]

One of the downsides that is common among many current smart home systems is the failure
to exploit their full potential [9–11]. The number of parameters such a system must take into
account and the variety of processes being controlled often lead to systems with a high degree
of complexity. The actions taken by the system become inexplicable while optimisations or
customisations imply a huge effort and are therefore avoided. The system proves to be not as
powerful or flexible as desired. Users are often disappointed by bad experiences with smart home
systems and decide to refrain from their use.

1.2. PROBLEM STATEMENT AND GOAL 3

The idea that led to this thesis emerged from a smart home project named ThinkHome [12]
which is developed at the Institute of Computer Aided Automation at the Vienna University of Tech-
nology [13, 14]. ThinkHome proposes an approach towards a smart home system that overcomes
the aforementioned problems in order to provide sustainable buildings with minimised energy
consumption. A building which incorporates ThinkHome is ought to make understandable control
decisions which maintain energy efficiency and comfort without patronising its inhabitants.

The ThinkHome ecosystem consists of two main components: a comprehensive knowledge
base and a multi-agent system. The knowledge base contains both static data (data that is seldom
changed, e.g. the structure of the building, user preferences, control rules) as well as dynamic data
(data that changes frequently, e.g. the current state of the building, the current state of external
influences, recent measurements from sensors, current states of actuators). It is implemented
using a set of ontologies which define a common data model and provide a shared vocabulary. By
exploiting the reasoning capabilities provided by these ontologies, the multi-agent system is able
to make control decisions based on either predefined rules or self-learned experience.

By using well-established Semantic Web technologies for its knowledge base and field-tested
methods from AI, ThinkHome is able to provide a both flexible and powerful infrastructure which
is suitable for dealing with the complexity of smart homes in an efficient and manageable way.

Like other smart home ecosystems, ThinkHome is designed to process input data from various
sources. One source is weather data which enables ThinkHome’s multi-agent system to make
control decisions based on current weather conditions such as temperature, humidity, precipitation,
or sunshine. Furthermore, ThinkHome needs knowledge about future weather conditions such
as upcoming sudden changes of weather which may be required by specific control decisions in
advance.

This Predictive Control has been the subject of numerous articles in the recent years [15–17];
however, none of these approaches builds upon a knowledge base that is built using an ontological
model.

1.2 Problem statement and goal

The aim of this thesis is the development of a data model for weather data which will be utilised
by smart home systems. Apart from current weather data, this model covers future weather data
over a time range suitable for the use within a smart home. This enables smart homes to use
current and future weather states as a source of knowledge for making control decisions. While
data about the current weather state can be obtained from various sensors that are installed at the
building, data about future weather states must be obtained from weather services that provide
forecasts for the desired period. There is a wide range of weather services available over the
Internet which can be utilised for this purpose.

Besides the data model itself, an application is developed which imports weather data from
local weather sensors, Internet weather services, or both. To provide a reference implementation,
one particular weather service is selected and utilised. The application is designed in a modular
way to simplify the use of different weather services.

The data model and the weather data enable smart homes to make control decisions based on
current and future weather conditions.

4 CHAPTER 1. INTRODUCTION

1.3 Methodological approach

There are several existing approaches for providing weather data to smart homes as well as
several approaches for covering weather data using (OWL) ontologies. These approaches are
analysed in order to determine whether they are suitable for being reused in the context of smart
homes. However, as Chapter 2 discusses, none of them meets the appropriate requirements. Thus,
the approaches previously analysed are reviewed for their structure, their advantages, and their
disadvantages.

Furthermore, a set of weather services that are available via Internet is reviewed, regarding the
type of data they provide and whether they suit the requirements of a smart home, e.g. the services
must provide both current data and forecasts, the data retrieved must be machine-readable, and
the services’ terms and conditions must allow the usage in smart homes. Based on these findings
and the data provided by weather sensors and Internet weather services, the data which can
be provided to smart homes is identified, i.e. a set of weather properties (e.g. temperature or
humidity) and the time range that will be covered. One of the services is selected that will later
be used to develop a reference implementation for the import of weather data.

As none of the existing ontologies qualifies to be used in smart homes, a new OWL ontology
is designed, always keeping its intended use and simple and efficient reasoning in mind. The
development process of this ontology – which is named SmartHomeWeather – follows one of
a set of well-known approaches for ontology development. Therefore, a set of approaches is
selected and evaluated. The best suitable approach is identified.

This approach is then applied to the problem domain of weather data. The result is an
ontology that satisfies the requirements found at smart homes as far as possible. Furthermore,
a reference implementation for the import of weather data from local sensors and services that
are available via Internet is developed. This implementation uses an object-oriented model that
stores the weather data and is responsible for converting input data into an appropriate format
for SmartHomeWeather. A modular design is preferred in order to simplify the adoption of a
different weather service when necessary.

Finally, all results are critically evaluated and possible future modifications, improvements,
and extensions are discussed.

1.4 Outline

Apart from the introduction, this thesis is structured in the following manner:
Chapter 2 discusses existing work regarding integration of weather data into smart home

systems, ontologies for weather data, and ontologies that may be imported by SmartHomeWeather.
Furthermore, ThinkHome is presented as an example of a smart home infrastructure that comprises
a knowledge base built using ontologies. RDF, RDFS, and OWL are covered by this chapter as
well as they are the technical foundations of this thesis.

Chapter 3 examines various sources for weather data and determines the scope of weather
data that is relevant to smart homes. Based on these findings, the range of weather data parameters
that will be used in the ontology is settled.

1.4. OUTLINE 5

In Chapter 4, various well-known approaches for developing ontologies are presented. Their
suitability for designing the SmartHomeWeather ontology is evaluated and the best-suited ap-
proach is identified. The latter is described in all details relevant in the context of this thesis.

Chapter 5 describes the process of actually designing the SmartHomeWeather ontology.
In Chapter 6, a Java application is presented that obtains weather data from appropriate

services and sensors and provides them to the SmartHomeWeather ontology.
Finally, Chapter 7 concludes about the insights from the previous chapters, summarises all

findings, and gives an outlook about possible future work.
Appendix A contains all tables and listings that are omitted from the previous chapters as they

are only included for reference and completeness, but not for understanding the topics covered by
the previous chapters.

Appendix B contains the Glossary of Terms.

CHAPTER 2
Existing work

The first part of this chapter covers the foundations the work of this thesis builds upon. It gives
introductions into all relevant topics, e.g. ontologies and associated modelling languages such
as RDF, RDFS, and OWL. Furthermore, it discusses the basic principles of ThinkHome which
serves as an example of a smart home that uses a knowledge base built upon a set of ontologies.

The second part sheds light on a selection of existing work regarding weather data in smart
homes and ontologies for weather data. Additionally, some ontologies are discussed which may
be reused in an ontology for weather data. The final section of this chapter reviews all ontologies
that are presented and identifies elements that can be used in the SmartHomeWeather ontology.

2.1 Foundations

This chapter presents the foundations the work in this thesis builds upon: The concept of an
ontology and the Web Ontology Language (OWL).

2.1.1 Ontologies

In computer science, an ontology represents knowledge as a set of concepts in a certain domain
and relationships between pairs of concepts [18]. The basic elements of ontologies – concepts,
properties, and relations – comprise a shared vocabulary which can be used to model a certain
domain.

Each object that is mapped into an ontology is represented by an individual (also known
as object). Individuals of the same type can be defined to be instances of concepts (also called
classes). Both classes and individuals can have attributes that specify their characteristics and
properties. Two arbitrary classes or individuals can be related to each other via a relation.

Furthermore, ontologies may contain function terms (structures formed from relations that
can be used in place of terms in statements), restrictions (descriptions of what must be true for
additional knowledge to be accepted), rules (statements in if-then notation that describe logical

7

8 CHAPTER 2. EXISTING WORK

Brian

37

age

is a

32

has parent

Man Person Woman

is a

is subclass of is subclass of

is a

has parent

age

SarahMaria

12

age

Figure 2.1: Example of a simple ontological model.

inferences that can be drawn), axioms (core knowledge of the ontology that is known to be true),
and events (changes to attributes or relations).

Figure 2.1 illustrates the aforementioned elements in a simple ontology: Person, Man, and
Woman are concepts. is subclass of is a property that defines one concept to be a sub-concept of
another concept (i.e. B is subclass of A states that every instance of B is also an instance of A).
Brian, Maria, and Sarah are individuals; each of them is an instance of a concept which is related
to it via the is a relation. age is a property of the individuals Brian, Maria, and Sarah and has
parent is a relation which associates two individuals to each other.

This model states the following facts: Men and women are persons. Brian (age 37) is a man
while Maria (age 12) and Sarah (age 32) are women. Maria has two parents, Brian and Sarah.

An important feature of an ontology is the support of automatic reasoning to deduce facts
that are not explicitly stated in the data model from the given information. In order to make
reasoning possible, the semantics of data models in ontologies (including OWL) are often based
on Description Logics [19, 20]. These are a family of logics consisting of decidable parts of
first-order predicate logic [21].

In the above example, because Man and Woman are sub-concepts of Person, Brian, Maria,
and Sarah are instances of Person. One could define a relation has child that is an inverse property
of has parent, i.e. A has child B if and only if B has parent A; then the statements Brian has child
Maria and Sarah has child Maria can be deduced.

If a concept Mother is defined as a Woman who has at least one child, Sarah can be inferred
to be an instance of this concept; the same works for an analogously defined concept Father with
Brian being an instance of. Furthermore, concepts Daughter and Son can be defined (someone
who has at least one parent and is a Woman or a Man, respectively). Then Maria can be inferred
to be a Daughter. Additionally, properties like has mother, has father, has son, has daughter etc.
can be defined.

Another core principle of an ontology is reusability [22, 23]. In order to share knowledge
across various systems and to ensure interoperability of these systems, ontologies are often reused

2.1. FOUNDATIONS 9

within other ontologies. Besides the simplification of knowledge exchange, ontology reuse tries
to avoid duplicate work and reduces the work that is necessary to create a new ontology for a
domain.

Ontologies are expressed using formal languages. There are many of these ontology languages
such as KIF (Knowledge Interchange Format) [24], DAML+OIL [25] – a successor to DAML [26]
(DARPA Agent Markup Language) and OIL (Ontology Inference Layer) [27] that combines
features of both –, RDFS (RDF Schema) [28], and OWL [19]. The latter, the Web Ontology
Language, is used in the SmartHomeWeather project; thus, Section 2.1.2 gives a brief introduction
into OWL.

Over the years, many ontologies have been developed. Some of them define concepts and
relations that can be found across many knowledge domains. These ontologies are often imported
into other ontologies in order to minimise the effort of creating new ontologies and to simplify
interoperability of ontologies. Examples for such ontologies that are implemented in OWL or
RDF Schema are:

• DOAP: DOAP (Description of a Project) [29] is a vocabulary for describing software
projects.

• Dublin Core: Dublin Core [30, 31] is a vocabulary for describing metadata of web doc-
uments, physical resources (documents, books etc.), and other objects such as works of
art.

• FOAF: FOAF (Friend of a Friend) [32, 33] is an ontology for describing social networks.
It models persons, the relations between them, their activities, and their relations to other
objects.

• SIOC: The SIOC (Semantically-Interlinked Online Communities) [34] is a technology built
around an ontology for encoding information from Internet discussion methods (message
boards, blogs, mailing lists etc.).

• SKOS: SKOS (Simple Knowledge Organization System) [35,36] is a data model for sharing
and linking knowledge organisation systems (thesauri, taxonomies, classification schemes,
and subject heading systems).

• UMBEL: UMBEL (Upper Mapping and Binding Exchange Layer) [37] is an approach
towards interoperability of content on the Web. It is a vocabulary for the construction
of ontologies being designed for interoperation and provides a reference structure of
25,000 concepts that provide a scaffolding to link and interoperate datasets and domain
vocabularies. Ontologies that define very general concepts which are shared between many
knowledge domains are termed upper-level ontologies. [38]

Many standards such as RDF, RDFS, or OWL and some of the above ontologies have
been published in the context of the W3C Semantic Web Activity [39] by the World Wide Web
Consortium (W3C) [40]. The Semantic Web is an approach to enrich the World Wide Web with
machine-interpretable metadata using the technologies described in this section in order to allow
better interoperability between Web pages and to ease knowledge sharing [41].

10 CHAPTER 2. EXISTING WORK

weather:CurrentWeather

18.2^^xsd:float

weather:hasTemperatureValue

geo:hasLocation
geo:Vienna

.72^^xsd:float

weather:hasHumidityValue

Figure 2.2: Example of a simple RDF model.

2.1.2 OWL

The Resource Description Framework (RDF) is a standard model for knowledge representa-
tion [42]. It is specified in a set of recommendations by the W3C.

In RDF, the term resources is used for instances. Each resource can have an arbitrary number
of properties, i.e. attributes that associate literate values (e.g. numerical values, strings) to the
resource or relations that link this resource to other resources. Resources and properties are
expressed using statements (triples) which consist of three parts that are called subject, predicate,
and object. To identify resources and properties, RDF uses URIs (Unified Resource Identifiers)1.
In case a resource does not have an identifier, it is a blank node.

Figure 2.2 depicts a simple example for a piece of knowledge from the domain of weather
data expressed using RDF: The resource weather:CurrentWeather represents the current
state of the weather. The property geo:hasLocation links weather:CurrentWeather to
the resource geo:Vienna which represents the city of Vienna, Austria; i.e. weather:Current
Weather describes the weather for Vienna. weather:weatherState has two more properties,
weather:hasTemperatureValue and weather:hasHumidityValue, which link two literal
values to the resource: a temperature value of 18.2 ◦C and a relative humidity value of 72%. The
type xsd:float of both literals is defined in XML Schema [44, 45], one of the several XML
schema languages available that define the structure of XML documents (Extensible Markup
Langauge) [46].

The complete URI of weather:CurrentWeather is http://example.org/weather#
CurrentWeather and the URI of geo:Vienna is http://example.org/geo#Vienna. As
in XML, substrings at the beginning of URIs may be replaced by prefixes to avoid frequent
recurrences of the same strings. The part of the URIs replaced by the prefix is called a namespace
which is used to group URIs for elements from the same source together; e.g. all concepts,
properties, and individuals defined by SmartHomeWeather have identifiers in the same namespace.

For the above example, the prefix weather has been defined to replace the string http://
example.org/weather# and geo replaces http://example.org/geo#. This results in the
identifiers weather:CurrentWeather and geo:Vienna that can be found in Figure 2.2.

For expressing the data that is represented by an RDF model, several serialization formats
are available. The RDF recommendation is based on RDF/XML which maps the RDF model to

1URIs are strings defined by RFC 3986 [43] that uniquely identify things.

2.1. FOUNDATIONS 11

<?xml version="1.0"?>
<rdf:RDF xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:geo="http://example.org/geo#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:weather="http://example.org/weather#">

<rdf:Description rdf:about="http://example.org/weather#CurrentWeather">
<weather:hasTemperatureValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#float">
18.2

</weather:hasTemperatureValue>
<weather:hasHumidityValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#float">
.72

</weather:hasHumidityValue>
<geo:hasLocation rdf:resource="http://example.org/geo#Vienna" />

</rdf:Description>
</rdf:RDF>

Listing 2.1: RDF example from Figure 2.2 encoded in RDF/XML syntax.

@prefix weather: <http://example.org/weather#> .
@prefix geo: <http://example.org/geo#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

weather:CurrentWeather weather:hasTemperatureValue "18.2"^^xsd:float ;
weather:hasHumidityValue ".72"^^xsd:float .

weather:CurrentWeather geo:hasLocation geo:Vienna .

Listing 2.2: RDF example from Figure 2.2 encoded in Turtle syntax.

an XML document [47]. The representation of the above example in RDF/XML can be seen in
Listing 2.1. As RDF/XML is a rather verbose format which may be difficult to read for humans, the
N3 (Notation3) representation for RDF is available which was developed with human-readability
in mind [48]. Notation3 incorporates some syntax features that go beyond the expressive power
of RDF. A subset of Notation3 named Turtle (Terse RDF Triple Language) is available that is
limited to the features required to map RDF models [49]. Listing 2.2 shows the above example in
Turtle syntax.

RDF schema (RDFS) is a recommendation by the W3C that builds upon RDF [28]. It
introduces a set of concepts and properties adding features that go beyond the expressive power
of RDF.

All things described by RDF are instances of rdfs:Resource. Concepts – which are
introduced by RDFS – are instances of rdfs:Class, and properties are instances of rdfs:
Property. Other concepts introduced by RDFS are rdfs:Literal, rdfs:Datatype, and
rdfs:XMLLiteral.

12 CHAPTER 2. EXISTING WORK

weather:CurrentWeather

18.2^^xsd:float

weather:hasTemperatureValue

geo:hasLocation
geo:Vienna

.72^^xsd:float

weather:hasHumidityValue

geo:Location

rdf:type

weather:WeatherState

rdf:type

rdfs:Property

rdf:type

rdfs:rangerdfs:domain

rdfs:Class

rdf:type rdf:type

Figure 2.3: Example of a simple RDFS model.

The property rdfs:domain states that any resource that has a given property is an instance
of one or more classes; the property rdfs:range states that the value of a property is an instance
of one or more classes. rdf:type (often abbreviated with a) is used to state that a resource
is an instance of a class. Using the property rdfs:subClassOf, hierarchies of classes can be
constructed: C1 rdfs:subClassOf C2 states that any instance of C2 is also an instance of C1.
rdfs:subPropertyOf is an equivalent that is used for declaring hierachies of properties. Other
properties defined by RDFS are rdfs:label and rdfs:comment.

Figure 2.3 shows the example from Figure 2.2, enriched by some elements that are in-
troduced by RDFS. The data model introduces two classes, weather:WeatherState and
geo:Location. weather:CurrentWeather and geo:Vienna are instances of weather:
WeatherState and geo:Location, respectively. geo:hasLocation is a property with do-
main weather:WeatherState and range geo:Location.

RDFS comes with reasoning support [50]; e.g. in the above example, the statements

weather:CurrentWeather rdf:type weather:WeatherState .
geo:Vienna rdf:type geo:Location .

can be removed without loss of knowledge. A reasoner can deduce them from these state-
ments:

2.1. FOUNDATIONS 13

weather:CurrentWeather geo:hasLocation geo:Vienna .
geo:hasLocation rdfs:domain weather:WeatherState .
geo:hasLocation rdfs:range geo:Location .

Many of the concepts and properties defined by RDFS are included in the Web Ontology
Language (OWL), a more expressive ontology language than RDFS which is based on RDF and
RDFS. OWL is developed by the OWL Working Group [51] of the W3C. OWL 1 was first published
in July 2002 as a working draft and became a W3C recommendation in February 20042 [53];
the first working draft of OWL 2 was released in March 2009 and the W3C recommendation of
OWL 2 in October 2009 with a second edition being finally released in December 2012 [19].
OWL 2 remains fully compatible to OWL 1, i.e. all OWL 1 ontologies are OWL 2 ontologies as
well, with unchanged semantics.

Compared to RDFS, OWL introduces the following elements (among others which are omitted
here):

• Properties are instances of owl:ObjectProperty, owl:DatatypeProperty, or both;
the property is termed object property or datatype property, respectively. An object property
links an individual to another individual while a datatype property links an individual to a
literal value.

• The property owl:equivalentClass is used to state that two classes are equivalent
while owl:allDisjointClasses states that there is no individual that is an instance of
more than one class from the defined set of classes.

• Some ontology languages include a Unique Name Assumption which states that two
different names always refer to different entities in the world [54]. OWL does not make this
assumption, but provides the properties owl:sameAs and owl:differentFrom that are
used to explicitly state that two individuals are the same individual or that two individuals
can never be the same individual.

• The properties owl:intersectionOf, owl:unionOf, and owl:complementOf can be
used to describe complex classes in a notation borrowed from set theory, e.g. if there are
two classes, Man and Woman, the class Person can be defined as the class union of them
(if no other classes exist).

• Using one of the properties owl:allValuesFrom, owl:someValuesFrom, and owl:
hasValue, a class can be defined based on the values or classes of their properties.

• The cardinality of properties per class can be limited using the properties owl:minCardi-
nality, owl:maxCardinality, and owl:cardinality

• Properties can have various characteristics: A property can be an inverse property of
another property (owl:inverseOf) and two properties can be disjoint (owl:property

2Both working draft and recommendation are maturity levels proposed by the W3C that indicate the state of their
technical reports [52].

14 CHAPTER 2. EXISTING WORK

@prefix weather: <http://example.org/weather#>
@prefix geo: <http://example.org/geo#>

SELECT ?temperature
WHERE {

?state a weather:WeatherState.
?state geo:Location geo:Vienna.
?state weather:hasTemperatureValue ?temperature.

}

Listing 2.3: SPARQL code to query all known temperature values in the model from Figure 2.2.

hasNextWeatherState(?s1, ?s2) ⇒ hasLaterWeatherState(?s1, ?s2)
hasLaterWeatherState(?s1, ?s2) ∧ hasLaterWeatherState(?s2, ?s3)

⇒ hasLaterWeatherState(?s1, ?s3)

Listing 2.4: SWRL example defining a transitive property based on an intransitive one.

DisjointWith). A property can be reflexive (i.e. it relates everything to itself, owl:
ReflexiveProperty), irreflexive (no individual can be related to itself, owl:Irreflex-
iveProperty), functional (every individual can be linked to at most one other individual,
owl:FunctionalProperty), or inverse functional (the inverse property is functional,
owl:InverseFunctionalProperty).

Reasoning in OWL respects the Open World Assumption [55, 56]. If some statement cannot
be inferred, it is not allowed to assume that this statement is false. Hence, reasoning in OWL is
monotonic: Adding more information to a model cannot cause anything to become false that has
previously known to be true, and vice versa [57].

Queries on RDF, RDFS, and OWL models are often performed using SPARQL, a query
language for RDF [58]. Listing 2.3 shows an example for the use of SPARQL to query all
temperature values known for Vienna, Austria in the RDFS model depicted in Figure 2.3.

SWRL is a language for OWL which is used to express rules [59]. SWRL can be used to
define relations that may be difficult or impossible to define using OWL alone, e.g. due to
the Open World Assumption. Given a model that contains a concept WeatherState for a
certain time and an intransitive property hasNextWeatherState which relates two consec-
utive instances of WeatherState to each other, Listing 2.4 gives an example demonstrating
how the semantics of a transitive property hasLaterWeatherState can be defined based on
hasNextWeatherState.

OWL ontologies are often designed using semantic editors like Protégé [60]. Common
reasoners for OWL include Pellet [61], RacerPro [62], FaCT++ [63], and HermiT [64]. Protégé
and Pellet are used to develop the SmartHomeWeather ontology in Chapter 5.

2.2. THINKHOME 15

2.2 ThinkHome

Section 1.1 gives a short introduction into the basic ideas of ThinkHome which serves as an
example for an ontology-based smart home infrastructure. This section goes further into detail
into the two main components that form the ThinkHome system: a comprehensive knowledge
base and a multi-agent system.

The knowledge base is organised into six sub-categories [13, 14]: Building (structure of the
building), Actor (human system users and software agents), Comfort (parameters that affect
the users’ well-being), Energy (energy providers), Process (activities), and Resource (available
equipment). Some parts of the knowledge base are static data (data that is seldom changed,
e.g. the structure of the building, user preferences, control rules) while others are dynamic data
(data that changes frequently, e.g. the current state of the building, the current state of external
influences, recent measurements from sensors, current states of actuators). The knowledge base
is implemented in OWL. This enables the use of the reasoning capabilities offered by semantic
reasoners. With SPARQL, a powerful query language for OWL models is available that is suitable
for accessing ThinkHome’s knowledge base.

A multi-agent system is both a software paradigm and a method supporting distributed
intelligence, interaction, and cooperation to work towards predefined goals [65]. ThinkHome
incorporates a multi-agent system to implement advanced control strategies. ThinkHome’s agent
society consists of various different agents, each serving a specific purpose: As the core of the
agent system, the Control Agent is responsible for executing control strategies; it obtains data
from various sources to get a global view of the system state, then calculates an appropriate
control strategy and initiates its execution. Other agents are the User Agent which acts on behalf
of a user to provide her with a comfortable environment; the Global Goals Agent which enforces
global policies towards energy efficiency; the Context Inference Agent which sets actions in
context with users, location, and time; the Auxiliary Data Agent which obtains data from various
sources; the KB Interface Agent which provides the link between the knowledge base and the
multi-agent system and is responsible for data exchange in all parts of the system; and the BAS
Interface Agent which acts as an interface between the agent society and the building automation
systems (BAS) available in the smart home.

2.3 Ontologies for weather data

To investigate the possibility that an already existing ontology qualifies to be used as a basis for
SmartHomeWeather, this section presents a selection of ontologies that have been designed to
cover the domain of weather data. In case no suitable ontology can be identified, the advantages
and disadvantages of the ontologies discussed are analysed in order to avoid their shortcomings
in SmartHomeWeather and to benefit from their advantages.

This section covers Semantic Sensor Web (Section 2.3.1), the SSN ontology (Section 2.3.2),
SWEET (Section 2.3.3), and NextGen (Section 2.3.4). There are several other approaches such as
the SENSEI project [66] which are not covered here.

Apart from ontology-based weather data models, there exist several approaches which
incorporate both current and predicted weather data without embodying an ontology. A commonly

16 CHAPTER 2. EXISTING WORK

used approach is the use of a mathematical model that allows the transformation of the problem
of predictive control based on weather data to an optimisation problem [67, 68]. As the structure
of these approaches differs greatly from the ontological approach that is found at smart home
systems like ThinkHome, these approaches are not covered here.

2.3.1 Semantic Sensor Web

Sensor Web Enablement (SWE) [69] is an initiative started by the Open Geospatial Consortium
(OGC) [70] for building networks of sensors based on Web technologies. Both sensors and
archived sensor data are intended to be discovered, accessed, and optionally controlled using
open standard protocols and interfaces. SWE is a suite of standards, each specifying encodings
for describing sensors, sensor observations, and/or sensor interface definitions.

There exists a huge number of sensor networks around the globe comprising sensors for a
large set of different phenomena. Therefore, a vast amount of data is available and the need arises
to structure that data and allow interoperability between different sensor networks. Semantic
Sensor Web (SSW) is an approach that builds upon SWE and Semantic Web activities by the W3C
which aims at annotating sensor data with semantic metadata to increase interoperability and
to provide contextual information essential for situational knowledge [71]. Semantic metadata
includes spatial, temporal, and thematic data.

The ontology of SSW – which is referred to as the SSW ontology from now on – is built upon
seven top-level concepts, excluding the concepts Location and Time which are imported from
other sources. These top-level concepts are Feature (an abstraction of a phenomenon from the
real word, e.g. a weather event such as a blizzard), Observation (the act of observing a property
or phenomenon with the goal of determining the value of a property), ObservationCollection
(a set of Observations), Process (a method, an algorithm, an instrument, or a system of these),
PropertyType (a characteristic of one or more types of Features), ResultData (an estimate of the
value of some property generated by a known procedure), and UnitOfMeasurement (as the name
suggests, a unit of measurement).

The SSW ontology includes temporal data using OWL-Time (see Section 2.4.2), units of
measurements, and geographical data based on the Basic (WGS84 lat/long) Vocabulary (see
Section 2.4.1). The concept WeatherObservation comes with five predefined sub-concepts
designed to map observations of atmospheric pressure, precipitation, radiation, temperature, or
wind, respectively. Additional concepts may be added for observations of other phenomena.

The SSW ontology does not support forecast values, but extending the SSW ontology to
implement those would be possible.

Applications of SSW include work on situation awareness based on the metadata specified by
SSW [72] and an architecture for a distributed semantic sensor web [73].

The only part from the SSW ontology that could be reused for SmartHomeWeather is the
concept Observations together with its sub-concepts; however, a number of additional sub-
concepts would have to be added. The Basic (WGS84 lat/long) Vocabulary [74] and OWL-
Time [75] can be used by the SmartHomeWeather ontology without the use of the SSW ontology.
For units of measurements there are other approaches than the SSW approaches available that
qualify for being used by SmartHomeWeather. Therefore, it was decided not to use the SSW
ontology for SmartHomeWeather.

2.3. ONTOLOGIES FOR WEATHER DATA 17

2.3.2 SSN Ontology

Another approach towards semantically enriched sensor network based on SWE is an OWL 2
ontology created by the W3C Semantic Sensor Network Incubator group (SSN-XG) [76] which is
referred to as the SSN Ontology [77]. The goal of this ontology is to simplify managing, querying,
and combining sensors and observation data from different sensor networks.

The SSN ontology uses DOLCE-UltraLite [78] as upper-level ontology. It defines 41 concepts
and 39 object properties which are organised into ten modules: ConstraintBlock (for defining
conditions on a system’s or a sensor’s operation), Data (for encoding any input from sensors),
Device (for defining devices in the sensor network, mostly sensors), Deployment (for specifying
the deployment of Devices), MeasuringCapability (properties of sensors, e.g. accuracy or response
time), OperatingRestriction (for defining conditions under which the system is expected to operate,
e.g. the life time of batteries or maintenance schedules), PlatformSite (entities to which other
entities – sensors and other platforms – can be attached), Process (a procedure that changes the
system’s state in some way, takes some input, and yields to some output), Skeleton (for mapping
real-world phenomena, their properties, and their relations to sensors), and System (for describing
pieces of infrastructure, e.g. the whole network, a component, its subsystems etc.).

The ontology can be used to view at the knowledge base from a number of perspectives: The
sensor perspective (which sensors are available; what and how do they sense), the observation
perspective (focusing on observations and related metadata), the system perspective (systems
of sensors), and the property perspective (properties of physical phenomena and how they are
sensed).

Work based on the SSN ontology includes its use for the representation of humans and
personal devices as sensors [79], its application in sensing for manufacturing [80], and as part of
a linked data infrastructure for SWE [81].

The primary reason for not using the SSN ontology for SmartHomeWeather is the fact that it
was published later than the development of SmartHomeWeather started. Furthermore, the SSN
ontology uses a level of abstraction that makes its use in smart homes too complicated. SSN is
well engineered towards mapping sensor networks and its observations, but it does not qualify
for only representing sensor data without mapping the details of a sensor network. Additionally,
forecast data is currently not supported, but an appropriate extension would be possible.

2.3.3 SWEET

SWEET is a set of more than 200 ontologies comprising about 6000 concepts [82, 83]. It is
developed by NASA’s Jet Propulsion Laboratory at the California Institute of Technology [84].
The initial version which dates back to 2003 is based on DAML+OIL [25, 85]. It structured its
ontologies into the following categories:

• Earth Realm: The “spheres” (e.g. atmosphere or ocean) of Earth belong to this category.

• Non-Living Element: This category includes non-living building blocks on nature (e.g.
particles or electromagnetic radiation).

• Living Element: All plants and animal species belong to this category.

18 CHAPTER 2. EXISTING WORK

• Physical Properties: This category contains physical properties (such as temperature or
height).

• Units: This category comprises units of measurement for all literal values used in the
ontologies.

• Numerical Entity: This category includes numerical extents (e.g. interval or point) and
numerical relations (e.g. greatherThan or max).

• Temporal Entity: This category includes ontologies that cover the temporal domain: tempo-
ral extents (e.g. duration or season) and temporal relations (e.g. after or before).

• Spatial Entity: Ontologies that cover the spatial domain fall into this category: spatial
extents (e.g. country or equator) and spatial relations (e.g. above or northOf).

• Phenomena: This category contains ontologies that define transient events; a phenomenon
that is described by such an ontology crosses bounds of other ontology domains (e.g.
hurricane or terrorist event).

SWEET is now implemented in OWL. The current version, SWEET 2.3 was last updated in
2012.

Works based on SWEET include work on integrating volcanic and atmospheric data in the
context of volcanic eruptions [86], an ontology of fractures of the Earth’s crust [87], and an
extension of SWEET by climate and forecasting terms [88].

In the context of smart homes, the SWEET ontologies are the best-qualified approach for
reusing them in an weather ontology. Units of measurements, temporal definitions, and specifica-
tions of geographical positions are supported. However, SWEET comes with a few downsides
that finally led to the decision not to use them in SmartHomeWeather:

• Although SWEET is separated into a large number of ontologies, there are many depen-
dencies between ontologies. Importing a single ontology into an OWL ontology causes the
import of all of its dependencies. It is impossible to import one ontology from SWEET
without importing dozens of other ontologies.

• SWEET currently does not cover future events.

• SWEET does not cover all weather elements that are relevant for smart homes.

Extensions to the SWEET ontologies in order address the second and the third issue would
be possible; an extension of SWEET to include forecast data already exists [88]. However, as a
large number of extensions would be necessary, it was decided not to use any parts of SWEET for
SmartHomeWeather and to build a new ontology from scratch instead.

2.4. RELATED ONTOLOGIES 19

geo:SpatialThing Vienna
rdf:type

geo:location

48.21^^float 16.37^^float 171^^float

geo:point
rdf:type

geo:lat

geo:long

geo:alt

Figure 2.4: Example of the use of the Basic Geo (WGS84 lat/long) Vocabulary to specify the
location of Vienna, Austria (N 48.21◦, E 16.37◦, 171m above MSL); all concepts and properties
in the geo namespace are part of this vocabulary.

2.3.4 NextGen

NextGen (Next Generation Air Transport System) [89] is a large-scale project carried out by
the Federal Aviation Administration (FAA), an organisation being responsible for all aspects
of civil air traffic in the United States [90]. The goal of NextGen is to completely reorganise
the US airspace to shorten flight paths, save time and fuel, minimise delays, increase capacity,
and improve safety. One of the elements that NextGen consists of is Next Generation Network
Enabled Weather (NNEW) which is designed to provide a comprehensive view on the weather
across the country, built from thousands of single weather observations. Once completed, NNEW
is expected to reduce weather-related delays in US airspace to the half of its current magnitude;
currently, approximately 70 percent of all air traffic delays are attributable to weather [91].

In order to efficiently process huge amounts of input weather data, NNEW incorporates a
knowledge base implemented using a set of ontologies. The NNEW ontology is centered around
concepts and relations describing past, current, and future weather phenomena.

The NNEW ontology is built on top of the SWEET ontologies (see Section 2.3.3) to map
weather phenomena. Extensions to SWEET include additional weather phenomena and concepts
and relations that lead to the 4-D Wx Data Cube (Four Dimensional Weather Data Cube) which
uses time as the fourth dimension for the “location” of weather observations.

It was decided not to use the NNEW ontology for SmartHomeWeather for the same reasons
as already explained in the case of SWEET. In the context of smart homes, the NNEW ontology
appears just as an extension to SWEET and therefore it is not qualified in equal measure. Fur-
thermore, NNEW is still work in progress and no final version is available that could be seen as a
standard.

2.4 Related ontologies

This section discusses some ontologies that cover domains that are related to weather data, e.g.
location data, temporal data, or units of measurements. These are candidates for being reused as
part of SmartHomeWeather.

20 CHAPTER 2. EXISTING WORK

Instant1

time:inDateTime

2012^^gYear
time:year

14^^decimal

30^^decimal ---16^^gDay --06^^gMonth

time:Instant
rdf:type

time:hour

time:minute
time:day time:month

Figure 2.5: Example of the use of the OWL-Time for describing an instant (June 16, 2012 at
14:30).

2.4.1 Location data

To handle geographical location data, the W3C Semantic Web Interest Group (SWIG) developed
the Basic Geo (WGS84 lat/long) Vocabulary [74]. It introduces a concept called Spatial thing and
its attributes lat, long, and alt according to the WGS-84 geodetic reference system [92]. Figure 2.4
shows an example of how the vocabulary is used.

As a downside, the vocabulary contains some data properties that are incorrectly defined to
be annotation properties. Thus, they must be redefined to be data properties whenever used in an
OWL ontology.

Furthermore, the Basic Geo (WGS84 lat/long) Vocabulary is not a standard; is has not even
been submitted to the W3C recommendation track for standardisation. No work on the vocabulary
has been done since 2006. The W3C Geospatial Incubator Group proposed the introduction of
GeoRSS XML and Geo OWL in 2007 [93] which are designed to enrich RSS/Atom feeds and OWL
ontologies with geographical information. Although GeoRSS seems to have gained popularity
over the last few years, Geo OWL continues to lead a miserable existance. The last reports by the
W3C Geospatial Incubator Group were published in 2007 [93, 94]. No standard which may be
qualified to supersede the Basic Geo (WGS84 lat/long) Vocabulary has yet been released.

2.4.2 Date and time

For specifying temporal properties, the W3C offers a working draft of OWL-Time [75], a Time
Ontology in OWL. It defines the concept called Temporal entity that can either be an Instant
or an Interval. Using appropriate attributes, the properties of a Temporal entity are specified.
Although OWL-Time is in the state of a working draft since September 2006, the main concepts
and attributes that will be reused by other ontologies are likely to remain unchanged in future
releases of that ontology.

Figure 2.5 shows an example of OWL-Time being used to specify an instant while Figure 2.6
demonstrates how a time interval is specified using OWL-Time.

2.4. RELATED ONTOLOGIES 21

Interval1

1^^decimal

time:hasDurationDescription

time:hours

time:Interval

rdf:type

30^^decimal

time:minutes

Figure 2.6: Example of the use of the OWL-Time for the description of the interval of 90 minutes
(one hour and 30 minutes).

Estate

50^^xsd:float

hasLengthhasWidth

30^^xsd:float

Figure 2.7: Example of a data model lacking units of measurement; the model represents an
estate with a length of 50metres and a width of 30metres.

2.4.3 Units of measurements

As the use of units of measurement is a topic that occurs in many ontologies, there are several
different approaches to cope with it.

The Measurement Units Ontology (MUO) [95, 96] is a simple and light-weight approach to
enrich measurement values in an ontology with appropriate units. Some of the most important
units are pre-defined, others can easily be added when needed. MUO is still work in progress,
however it is not expected that it might change heavily in the future. Everything that will be
reused by other ontologies will probably remain unchanged. Hence, MUO can be imported into
any ontology without problems.

Figure 2.7 shows the representation of an estate with its length and width specified using the
datatype properties hasLength and hasWidth. In Figure 2.8, MUO is introduced to specify
that both length and width are measured in metres: hasLength and hasWidth become object
properties which link blank nodes of type muo:Quality value to the individual Estate;
hasLength and hasWidth are now both sub-properties of the property muo:Quality value.
Each blank node has two properties; muo:numerical value states the literal value while

22 CHAPTER 2. EXISTING WORK

Estate

50^^xsd:float

hasLength

muo:Quality value

rdf:subPropertyOf

muo:Quality value

rdfs:SubClassOf

muo:meter

muo:measured in

muo:Unit of
measurement

rdf:type

hasWidth

30^^xsd:float

muo:numerical value

rdfs:SubClassOf

muo:numerical value

muo:measured in

Figure 2.8: Example of the use of MUO for the introduction of units of measurements.

muo:measured in gives the unit of measurement for the literal value. The unit (meter in this
case) is represented by an instance of muo:Unit of measurement.

The Ontology of Units of Measure and Related Concepts (OM) [97, 98] is another promising
approach for adding measurement units to OWL that even provides features like the conversion
between different units for the same quantities and representation and checking of formulas.
Figure 2.9 shows an example of the usage of OM. In this example, the specification of the length
of the estate is centered around a blank node which is an instance of om:Length which is a sub-
concept of om:Quantity. The blank node links to Estate using the property om:phenomenon
and via the property om:value to another blank node which is an instance of om:Measure. This
instance has a datatype property of type om:numerical_value which specifies the numeric
value of the estate’s length, while the object property om:unit links to an instance of om:Unit
named om:meter. The width of the estate is stated in a similar way.

OM is a rather large ontology (nearly 2.4MiB in RDF/XML syntax) compared to the Smart-
HomeWeather ontology and related to the purpose it would fulfil in SmartHomeWeather; further-
more, at the time when the article about OM was published, development of SmartHomeWeather
had already completed. Hence, OM was not taken into account for being used in the SmartHome-
Weather ontology.

Besides the Measurement Units Ontology and the Ontology of Units of Measure and Related
Concepts, several other ontologies have been examined, but all of them have shortcomings that
render their use in the SmartHomeWeather ontology merely impossible. These ontologies are:

• SWEET: Besides concepts, attributes, and individuals for atmospherical phenomena,

2.4. RELATED ONTOLOGIES 23

Estate

50^^xsd:float

om:phenomenon

om:meter

om:Unit

rdf:type

om:phenomenon

30^^xsd:float

om:numerical_value

om:Length om:Quantity om:Width

rdf:type

rdfs:subClassOf rdfs:subClassOf

rdf:type

om:Measure

om:value om:value

rdf:type rdf:type

om:unit om:unit

om:numerical_value

Figure 2.9: Example of the use of OM for the introduction of units of measurements.

SWEET also comes with support for literals more precisely specified by units [85]. However,
as mentioned in Section 2.3.3, SWEET is an ontology that is inappropriate for use in Smart-
HomeWeather.

• QUDT: QUDT, a set of ontologies for Quantities, Units, Dimensions and Data Types
in OWL and XML, is a promising approach for adding support for units to an OWL
ontology [99]. However, QUDT does not work in Protégé together with the Pellet reasoner.
Using QUDT would require several changes to its OWL files. Hence, it cannot be used in
the SmartHomeWeather ontology.

• QUOMOS: The OASIS Quantities and Units of Measure Ontology Standard (QUOMOS)
is a project that aims at developing “an ontology for quantities, systems of measurement
units, and base dimensions for use across multiple industries” [100]. However, as no
deliverables have been released at the time of writing, it cannot be used in SmartHome-
Weather.

• OBO Foundry Initiative: The OBO Foundry Initiative [101] is an initiative that aims at
collecting ontologies for use in the biomedical domain. The list of The Open Biological
and Biomedical Ontologies (abbreviated by OBO) includes an ontology for units of mea-
surements [102, 103]. This ontology apparently covers most of the units that are used in
the SmartHomeWeather ontology. However, it lacks any documentation and therefore is
unsuitable for being used in SmartHomeWeather.

24 CHAPTER 2. EXISTING WORK

2.5 Conclusion

As Section 2.3 discusses, unfortunately no existing ontology covers the domain of weather data
in a way suitable for using it as a starting point for SmartHomeWeather.

Thus, a completely new ontology is created (see Chapter 5). From the insights gained in
this chapter through existing weather ontologies, the following aspects are considered for the
development of SmartHomeWeather:

• Many of the existing weather ontologies are intended to map a whole sensor network. In
the case of SmartHomeWeather, this is not necessary. To avoid overhead, only observations
of weather elements (temperature, humidity etc.) will be covered, not their sensors. One
goal of SmartHomeWeather is to keep it as sophisticated as required, but as simple as
possible.

• The Basic Geo (WGS84 lat/long) Vocabulary and OWL-Time are used by some of the
existing ontologies. This qualifies these vocabularies to adequately model geographical and
temporal data in a number of different domains. Hence, both vocabularies will be imported
by SmartHomeWeather.

• Some ontologies include concepts and properties that are defined to represent units of
measurement. SmartHomeWeather will support units of measurement as well, in fact by
using the Measurements Units Ontology.

CHAPTER 3
Weather data

Based on the insights acquired from existing work in Chapter 2, this chapter aims at compiling
a set of weather data elements which are either necessary for providing useful data on exterior
influences to smart home systems or which would add benefit to the data provided. Furthermore,
possible sources are evaluated with respect to their suitability for the given context.

3.1 Weather information

In order to identify which data is required for the SmartHomeWeather ontology, it is necessary to
define the scope that shall be covered by the ontology. When designing an ontology, requirements
analysis is often centred around a set of competency questions [104–107]. If the ontology is able
to provide answers to all of these competency questions, its requirements are met.

Below are the questions that have been identified to be adequate competency questions for
SmartHomeWeather; the list stems from analysis of the processes at a smart home that may be
influenced by weather.

• What is the current weather situation?

• What will the weather situation be in one hour, in two hours, . . . , in 24 hours?

• What is the current temperature, humidity, wind speed, . . . ?

• What will be the temperature, humidity, wind speed, . . . in one hour, in two hours, . . . , in
24 hours?

• What will be the minimum temperature, humidity, . . . over the next 24 hours? What are
the maximum values?

• Will the weather change? Will the temperature, humidity, . . . rise or fall?

• Does it rain? Will it rain in the next hours? Will it rain today?

25

26 CHAPTER 3. WEATHER DATA

• Will there be sunshine today?

• Do we need to irrigate the garden?

• Will there be severe weather?

• Will temperature drop/stay below 0 ◦C?

• When can we open windows and when do we have to keep them shut?

• When do we need sun protection?

• When will it outside be colder than inside the house? When will it be warmer?

These competency questions will again be used in Section 5.2 when the Ontology Require-
ments Specification Document is created.

The idea of providing a smart home with future weather data is to enable it to prepare for
upcoming weather situations. There are Internet weather services that provide forecasts for
several days (see Section 3.3.1). However, the further the time described by a forecast lies in the
future, the more inaccurate the forecast becomes [108, 109]. Additionally, no decisions in a smart
home have been identified that require the availability of a forecast about a time more than a few
hours in the future. Hence, the period of 24 hours has been chosen as a compromise between the
deteriorating accuracy of weather forecasts over time and the time period smart homes require
weather data for.

The above competency questions can be answered when the (predicted) state of the weather
for particular points of time is known. The state of the weather is given by measurement values
of certain weather elements. These weather elements are temperature, relative and absolute
humidity, dew point temperature, wind speed, wind direction, precipitation, cloud coverage, and
others. [110]

A set of measurement values for one particular point of time is called weather state from now
on.

Apart from weather elements, Internet weather services often provide some information that
will be called weather condition from now on. Generally speaking, the weather condition is a
one-word description of the current weather situation. Examples for the general weather condition
are “Sun”, “Rain”, and “Fog”. Some weather conditions can be split up into several conditions,
e.g. “It is overcast and raining” into “Overcast” and “Rain”.

Sources for weather data are weather sensors and weather forecasts. As smart homes perform
no weather forecasting on their own, forecast data is gathered from weather services via Internet.
While data about the current weather state can be obtained from both weather sensors and Internet
services, the only source for data about future weather states are Internet services.

Section 3.2 covers data that can be obtained from weather sensors; Section 3.3 discusses
weather data that can be fetched from Internet services. Based on the findings in these two sections,
Section 3.6 presents a set of weather elements that are incorporated into SmartHomeWeather.

Section 3.4 describes the API of yr.no which is identified in Section 3.3.2 to be the weather
service which suits the requirements of smart homes best. Section 3.5 describes how the position
of the sun can be calculated.

3.2. SENSOR DATA 27

3.2 Sensor data

While there are stand-alone solutions for fetching weather data from sensors, in many home
automation systems fieldbus systems are used.

3.2.1 Fieldbus systems

Over the past few years, several of fieldbus systems have emerged in the context of home
automation. A fieldbus is a network system for real-time distributed control [111], standardised
e.g. by IEC 61158 [112]. A Programmable Logic Controller (PLC), a computer which is designed
specifically for automation purposes, can utilise a fieldbus to retrieve sensor data from sensors and
send control commands to actuators. Among the sensors that are available for fieldbus systems,
there exist sensors for a wide variety of weather elements such as temperature or humidity.

There are several competing standards for fieldbus systems, including:

• KNX: KNX is an international standard (ISO/IEC 14543-3 [113, 114]) which is the succes-
sor to three previously used fieldbus systems, namely European Home Systems Protocol
(EHS), BatiBUS, and European Installation Bus (EIB). It supports the use of several physi-
cal communication media such as twisted pair wiring, power line networking, Ethernet,
infrared, or radio. There is a wide range of devices that can be used for controlling a KNX
network.

• LonWorks: Developed by Echelon Corporation [115] in 1990, LonWorks (Local Oper-
ating Network) [116] is a widely used fieldbus standard; since 2008, the technology is
standardised as ISO/IEC 14908 [117]. LonWorks supports twisted pair cabling and power
line networking and can be controlled by any general-purpose processor which can use the
LonTalk protocol that is employed by LonWorks.

• BACnet: BACnet (building automation and control networks) [118] is another communi-
cations protocol which is internationally standardised in ISO 16484-5 [119]. It employs
several communication means such as Ethernet, BACnet/IP, Point-to-point connections
over RS-232, or LonWorks’ LonTalk.

• LCN: LCN (Local Control Network) [120] is a proprietary home automation system
developed by Issendorf KG in 1992. LCN is organised into LCN modules that exchange
data over a single data wire and the neutral wire power supply.

3.2.2 KNX sensors

Each of the fieldbus systems mentioned in Section 3.2.1 provides a variety of sensors. KNX,
which is an open standard, is in this section used as an example to illustrate the weather sensors
that are available for fieldbus systems.

KNX weather sensors are available for

• atmospheric pressure (barometer),

28 CHAPTER 3. WEATHER DATA

• brightness (photometer),

• humidity (hygrometer),

• precipitation (rain gauge),

• solar radiation (pyranometer),

• temperature (thermometer), and

• wind direction and wind speed (wind vane and anemometer, respectively).

There exist weather stations that provide sensors for combinations of the above weather
elements.

Other sensors that are available under the KNX standard include sensors for water, fluid level,
smoke, CO2 concentration, or air pollution. However, these are not relevant in the context of
SmartHomeWeather as they do not provide weather data.

3.3 Service data

This section presents the details of a number of popular weather services that are available over
the Internet. In a first step, a number of aspects are identified that are relevant for the usage of a
weather service in the context of smart homes. The weather services are then evaluated regarding
these aspects.

3.3.1 Available Internet services

There is a tremendous amount of services providing weather data over the Internet1. However,
only a small number of these services is suitable for usage in the context of SmartHomeWeather.
The services differ regarding the way data is provided, the data format, the area being covered,
the terms of use etc.

The access to Internet weather services in SmartHomeWeather is implemented in Java, hence
an important question about a certain weather service is whether it can easily be accessed from
within a Java program.

For evaluation of Internet weather services, the following aspects are examined:

• Coverage area: Which part of the world is covered by the weather service?
In order to keep things simple, a service covering a larger part of the world is preferred
over a service covering a smaller part.

• Data format: In what format is weather data being delivered? Can it be easily parsed and
processed?
A data format that is easier to handle on client-side is preferred over a data format that

1No website has been found that compiles a comprehensive list of Internet weather services; however, there are
many websites that discuss various services [121–123].

3.3. SERVICE DATA 29

requires more complicated handling. XML [46] can be handled natively within many
programming languages including Java, using DOM (Document Object Model) [124] or
SAX (Simple API for XML) [125]. JSON (JavaScript Object Notation) [126] may require
an additional library in some languages such as Java2, while PHP comes with built-in
support for JSON [130]. There may even be data formats that require the development of a
new parser.

• Data access: How does the access to weather data work? How is data requested and how
is the answer being received?
The less complicated a request is, the more suitable a weather service is for SmartHome-
Weather. Requests in HTTP (Hypertext Transfer Protocol) [131] are preferred due to the
simplicity of performing requests on the client side in Java using the Apache HttpCompo-
nents project [132].

• Access restrictions, terms of use: Is the service available freely or is the access restricted?
Are credentials (e.g. a username and a password or an access key) required for access?
If yes, can the credentials be obtained in a simple way or does that entail a complicated
procedure? Are there any access fees for academic or commercial use?
A service being less restricted is preferred over a service coming with more restrictions.

• Documentation: Is there any documentation for this service? Does it cover all aspects or
are there some features that are undocumented?
Of course, a service without documentation is unsuitable. A better documented service is
always preferred over a service that is less documented.

• Stability: Can the service be expected to remain unchanged over a reasonable amount of
time (e.g. several years)? If there will be future changes, will they be announced? How
long will they be announced in advance?
A stable service is preferred over an unstable one. A better handling of changes is preferred
over a worse handling of changes.

• Weather elements: Which weather elements (e.g. temperature, relative humidity, dew
point etc.) are covered by the service?
A weather service covering a wider range of weather elements is preferred over a service
covering a smaller range.

• Time frame: Are forecasts available? If yes, how detailed are these forecasts? How far
into the future are forecasts available? What is the interval between two forecasts?
Forecasts for at least 48 hours are mandatory. Over the next 48 hours, there should be at
least six forecasts with an interval of at most eight hours between two consecutive forecasts.
A weather service covering a longer period than 48 hours into the future and/or more than
six forecasts within the next 48 hours is preferred.

Although the competency questions for SmartHomeWeather only ask for weather data
over the upcoming 24 hours, a weather service used for SmartHomeWeather is expected to

2JSON libraries for Java include JSON-lib [127], FlexJSON [128], and Gson [129]

30 CHAPTER 3. WEATHER DATA

provide forcasts for at least 48 hours into the future. This allows or improves interpolation
of missing values (see Section 6.2.1 for details).

• Weather updates: How often is the weather data being updated?
The data should be updated at least every six hours. A service having a shorter update
interval is preferred over a service having a longer interval.

In the following sections, some of the most popular Internet weather services are evaluated.
The selection is a set of services that seemed to be popular at the time the evaluation was
performed.

In addition to the aspects listed above, some general information is provided (operator and
web page). The following sections aim at determining which Internet weather service best fits
the given requirements. Furthermore, based on which weather elements are provided by various
services, a set of weather elements is determined that will be used in the ontology. In case data
about a weather element is not available from any weather service, a sensor can at least provide
current data about this element.

Weather services being evaluated Table 3.1 lists all weather services that have been eval-
uated together with their operators, web pages, and coverage areas. Google Weather API is
discontinued [133]; it is included here because Google announced its shutdown after the time
this evaluation was conducted. The Google Weather API serves as an example of a weather
service that is unsuitable for usage in SmartHomeWeather as it is discontinued. DWD (Deutscher
Wetterdienst) [134] and NWS [135] are the only services that do not provide worldwide forecast
data.

Table 3.2 lists the weather services together with the data format they use to provide their
data. For the case of Java, XML-based formats including RSS feeds (Rich Site Summary) [145]
are preferred because of the built-in support for XML by DOM and SAX. There are libraries for
providing JSON and JSONP (JSON with padding) [146] support for Java. CSV (comma-separated
values) [147] is a format that can be parsed easily in any language, although using CSV leads to
more implementation costs than XML. There are no libraries available that provide Java support
for the SYNOP format (Surface Synoptic Observations) [143] which is used by DWD; hence this
format is unsuitable to be used in a Java application.

METAR (Meteorological Aerodrome Report) [148] is a format for reporting weather data that
is standardised by the International Civil Aviation Organization (ICAO) [149]. It is primarily
used in aviation to provide weather data to pilots of aircraft. There are a few parsers available,
e.g. PyMETAR [150] for Python or an implementation for Java [151].

Most services provide their data via HTTP [131], hence simple access from Java applications
is possible using existing libraries such as the Apache HttpComponents project [132]. DWD uses
access via FTP (File Transfer Protocol) [152] while NWS (National Weather Service) employs
REST (Representational State Transfer) [153] and SOAP (Simple Object Access Protocol) [154]
for the access to its data. FTP, REST, and SOAP can all be used in Java applications, but their
use may lead to higher implementation costs compared to the use of HTTP.

Regarding the terms of use that are summarised in Table 3.3, there are some services that
require the creation of an account (DWD, World Weather Online, Weather Underground, and

3.3. SERVICE DATA 31

Weather service Operator Web page Coverage area
DWD Deutscher Wetterdienst

(DWD, “German weather
service”)

[134] Worldwide (cur-
rent weather
data); Germany
and large cities
around the world
(forecasts)

Google Weather Feed Google Inc. none1 Worldwide
METAR Airports around the world [136] Worldwide
NWS National Weather Service2 [135] Only US
Weather.com The Weather Channel, LLC [137] Worldwide
Weather Underground Weather Underground [138] Worldwide
World Weather Online World Weather Online [139] Worldwide
Yahoo! Weather Yahoo! Inc. [140] Worldwide
yr.no Meteorologisk institutt (Nor-

wegian Meteorological Insti-
tute), Norsk rikskringkasting
AS (NRK, Norwegian Broad-
casting Corporation)

[141] Worldwide

1 not publicly advertised API
2 part of NOAA (National Oceanic and Atmospheric Administration) [142]

Table 3.1: Names, operators, web pages, and coverage areas of all weather services that have
been evaluated.

Weather.com) while others don’t (Yahoo! Weather, Google Weather Feed, yr.no, and METAR).
Some services provide all of their data freely (DWD, yr.no, METAR, or NWS), others provide
the data freely only for non-commercial purposes (Yahoo! Weather, World Weather Online, and
Weather Underground); for some services, the terms of use are unknown (Google Weather Feed,
Weather.com).

Except the ones not providing information about updates (Yahoo! Weather, World Weather
Online, Weather Underground, and Weather.com) and the one being discontinued (Google Weather
Feed), all weather services declare to perform regular updates to their weather services (see
Table 3.4). Any changes are announced either on the web pages, via RSS feeds, or via email.

Table 3.5 shows which data is available from the weather services. While temperature is
available from all services, some services provide only data about a few other weather elements
(Google Weather Feed and Weather Underground); additionally, from some services only limited
forecasts are available (DWD, Yahoo! Weather, and World Weather Online, Weather.com). Some
services limit the availability of data via their freely accessible interface (World Weather Online
and Weather Underground).

As seen in Table 3.5, METAR only provides current weather data; some services provide
forecasts for several days, but issue only one forecast per day (Yahoo! Weather, Google Weather

32 CHAPTER 3. WEATHER DATA

Data format Data access

C
SV

JS
O

N

JS
O

N
P

R
SS

X
M

L

C
us

to
m

F
TP

H
TT

P

R
E

ST

SO
A

P

C
us

to
m

DWD × × × × × X1 X × × × ×
Google Weather Feed × × × × X × × X × × ×
METAR × × × × × X2 × × × × X3

NWS × × × × X × × × X X ×
Weather.com × X × × X × × X × × ×
Weather Underground × X × × X × × X × × ×
World Weather Online X X X × X × × X × × ×
Yahoo! Weather × × × X × × × X × × ×
yr.no × × × × X × × X × × ×
1 DWD uses SYNOP (surface synoptic observations) [143] for current weather

data, a data format frequently used for weather observations specified by the
WMO (World Meteorological Organization) [144]; furthermore, for forecasts
DWD uses a data format which is not machine-readable consisting of weather
maps, tables, and texts.

2 METAR uses its own format standardised by ICAO which is not human readable.
3 Weather reports in METAR format are available in HTML format from NOAA’s

web page (National Oceanic and Atmospheric Administration) [142]. Various
other data sources are available.

Table 3.2: Data formats and protocols for data access of weather services.

Feed, Weather Underground, Weather.com, and World Weather Online). All weather services
provide frequent updates (at least every few hours).

Nearly all weather services discussed provide comprehensive documentation regarding their
interfaces and use; the only exception is the Google Weather Feed which was an inofficial API
and therefore has never had any official documentation.

3.3.2 Summary

Table 3.6 summarises the main advantages and disadvantages of the weather services discussed in
Section 3.3.1. Based on that evaluation, it is determined that yr.no clearly suits the requirements
of smart homes and SmartHomeWeather best. It provides current data and four forecasts per day
over a period of nine days. Data is accessible in XML format via HTTP and is licensed under
CC-BY 3.0 [155]. Data includes at least details about temperature, wind direction and speed,
chance and intensity of precipitation, atmospheric pressure, relative humidity, cloud coverage,
and fog.

Thus, yr.no is used in Chapter 6 for developing the reference implementation of a program
that obtains weather data for a certain location and feeds it into the SmartHomeWeather ontology;

3.4. WEATHER DATA API OF YR.NO 33

Weather service Access restrictions, terms of use
DWD An account is mandatory for access. Account creation is a matter of

minutes and new accounts do not need to be approved by DWD. The
usage of DWD is free within smart home projects.

Google Weather
Feed

No account required; terms of use unknown (does not have an explic-
itly stated licence due to being an inofficial interface).

METAR Freely available without restrictions.
NWS Freely available without restrictions.
Weather.com An account must be created in a complicated process; licence unclear.
Weather Under-
ground

Account creation is mandatory; available for personal, non-
commercial use (public API); custom weather services are available.

World Weather
Online

An account must be created for accessing both the Free API and
the Premium API. The Free API is free of charge for personal and
commercial use, credits must be given to World Weather Online. A
Premium API is available at a charge.

Yahoo! Weather Free of charge for individuals and non-profit organizations, attribu-
tion required. No statement about commercial use anywhere in the
documentation.

yr.no No account required; data licenced under CC-BY 3.0 [155].

Table 3.3: Access restrictions and terms of use for weather services.

see Section 3.4 for details on how to query yr.no’s weather API.
Some weather services provide data about the position of the sun, e.g. the times of sunrise and

sunset. However, SmartHomeWeather does not rely on this data and chooses a different approach
to determine the position of the sun (see Section 3.5).

3.4 Weather data API of yr.no

This section gives an overview on how requests to the weather API of yr.no work.
For an arbitrary request, latitude and longitude must be specified (in degrees; northern

latitudes and eastern longitudes are represented by positive values) [157]. Additionally, the
altitude above sea level (in metres) may be specified for locations outside of Norway. Based on
this input data, a URL of the format

http://api.yr.no/weatherapi/locationforecast/1.8/?lat=<latitude>;lon=<longitude>

or

http://api.yr.no/weatherapi/locationforecast/1.8/?lat=<latitude>;lon=<longitude>;msl=<altitude>

is constructed, e.g.

34 CHAPTER 3. WEATHER DATA

Weather service Stability
DWD A few changes every weeks which are announced via email at least

one week in advance; nothing about the data required by SmartHome-
Weather has been changed during the last twelve months.

Google Weather
Feed

Discontinued [133].

METAR Stable.1

NWS Small changes every few months with announcements via RSS that
do not effect the core parts of the interface.

Weather.com Unknown.
Weather Under-
ground

The has been a recent API change; the stability is unknown.

World Weather
Online

Unknown.

Yahoo! Weather Unknown.
yr.no New releases of the API one or two times per year; the old API

remains in operation a few months after the release of a new one. An-
nouncements are made on the web page. A less frequently changing
API with long term support is available [156].

1 METAR is standardised by ICAO [149]. It was introduced in 1968 and has been modi-
fied a number of times since. However, most elements have remained the same since
introduction and can be expected to remain unchanged in the long run.

Table 3.4: Stability of weather services.

http://api.yr.no/weatherapi/locationforecast/1.8/?lat=48.21;lon=16.37;msl=171

for the city of Vienna, Austria (N 48.21◦, E 16.37◦, 171m above MSL). An HTTP GET
request to this URL returns an XML document conforming to the XML Schema [44] definition
that can be found online [158].

The structure of this XML document is shown in Listing 3.1 (attributes are omitted for better
readability).

The attributes of the <model> element describe when the forecast has been created, when it
will be updated for the next time, and the timestamps of the first and the last forecast returned are.

There is an arbitrary number of <time> elements that are children of the <product> element.
Every <time> element represents the weather forecast for a certain instant or a certain period
of time. Each <time> element has a <location> element that has a child element for each
weather property. A typical <time> element is depicted in Listing 3.2.

In total, there are 41 elements that are allowed to be children of the <location> element.
While all of the are used by yr.no for locations within Norway and for some other places
within Scandinavia, yr.no only uses a subset of these elements for other locations around the

3.4. WEATHER DATA API OF YR.NO 35

D
W

D

G
oo

gl
e

W
ea

th
er

Fe
ed

M
E

TA
R

N
W

S

W
ea

th
er

.c
om

W
ea

th
er

U
nd

er
gr

ou
nd

1

W
or

ld
W

ea
th

er
O

nl
in

e1

Ya
ho

o!
W

ea
th

er

yr
.n

o

C
ur

re
nt

w
ea

th
er

Cloud coverage X × X X × × × × X
Condition X X × × X X × × X
Dew point × × X X X × X × ×
Humidity X X × × X × X X X
Precipitation X × X X X × X X X
Pressure X × X × X × X X X
Sunrise, sunset × × × × X × × X X
Temperature X X X X X X X X X
Visibility × × X × X × × X ×
Wind X × X X X × X X X

Fu
tu

re
w

ea
th

er

Cloud coverage × × × X × × × × X
Condition X X × × X X × X X
Dew point × × × X × × X × ×
Humidity × × × × X × X × X
Precipitation × × × X X × X × X
Pressure × × × × × × X × X
Sunrise, sunset × × × × X × × × X
Temperature X × × X X X X X X
Visibility × × × × × × × × ×
Wind × × × X X × X × X

Forecast range (days) 3 3 0 > 7 5 5 5 2 9
Forecasts per day 1-2 1 - 4 1 1 1 1 4
Update interval (hours) < 3 < 3 0.5 1 1 < 3 < 3 3-4 < 3

1 Further data is available via non-public interfaces which are adapted on customer
request.

Table 3.5: Weather data provided by weather services.

36 CHAPTER 3. WEATHER DATA

Weather service Advantage(s) Disadvantage(s)
DWD - Data format (SYNOP); forecasts

lack important weather elements.
Google Weather Feed Simple data format (XML). Unofficial, undocumented API;

unknown terms of use; only
a small number of available
weather elements; discontinued.

METAR - Data format (METAR); no fore-
casts.

NWS Simple data format (XML). No worldwide coverage.
Weather.com Data formats (XML, JSON). Complicated account creation.
Weather Underground Data formats (XML, JSON). Public API lacks important data.
World Weather Online Wide range of data formats. Free API lacks important data.
Yahoo! Weather Simple data format (RSS). Low number of forecasts; fore-

casts lack important weather ele-
ments.

yr.no Simple data format (XML);
available under CC-BY
3.0 [155].

-

Table 3.6: Advantages and disadvantages of Internet weather services.

<weatherdata>
<meta>

<model />
</meta>
<product>

/* ... */
</product>

</weatherdata>

Listing 3.1: Structure of the XML document returned by the API of yr.no; attributes are omitted
for better readability.

3.4. WEATHER DATA API OF YR.NO 37

<time datatype="forecast" from="2013-06-24T12:00:00Z" to="2013-06-24T12:00:00Z">
<location altitude="171" latitude="48.2100" longitude="16.3700">

<temperature id="TTT" unit="celcius" value="15.7"/>
<windDirection id="dd" deg="303.4" name="NW"/>
<windSpeed id="ff" mps="6.7" beaufort="4" name="Laber bris"/>
<humidity value="67.5" unit="percent"/>
<pressure id="pr" unit="hPa" value="1016.0"/>
<cloudiness id="NN" percent="100.0"/>
<fog id="FOG" percent="0.0"/>
<lowClouds id="LOW" percent="100.0"/>
<mediumClouds id="MEDIUM" percent="89.1"/>
<highClouds id="HIGH" percent="43.0"/>

</location>
</time>

Listing 3.2: A typical <time> element returned by the API of yr.no.

<time datatype="forecast" from="2013-06-24T06:00:00Z" to="2013-06-24T12:00:00Z">
<location altitude="171" latitude="48.2100" longitude="16.3700">

<precipitation unit="mm" value="2.5"/>
<symbol id="LIGHTRAIN" number="9"/>

</location>
</time>

Listing 3.3: A <time> element returned by the API of yr.no describing a period of time.

globe; these are pressure, precipitation, cloudiness, lowClouds, mediumClouds,
highClouds, temperature, dewpointTemperature, humidity, windDirection, wind
Speed, and symbol. These are exactly the elements which are relevant for SmartHomeWeather.

None of the child elements is required. However, for most places of the world, the XML
document contains <location> elements having two different sets of child elements:

• Some <location> elements have the child elements temperature, windDirection,
windSpeed, humidity, pressure, cloudiness, fog, lowClouds, mediumClouds,
and highClouds (as in Listing 3.2). The values of the attributes from and to of the
enclosing <time> element are equal. <time> elements that contain such a <location>
element describe the weather situation for a single point of time.

• Some <location> elements have the child elements precipitation and symbol; the
values of the attributes from and to of the enclosing <time> element differ by three to
six hours. These <time> elements describe the weather situation for a period of time. See
Listing 3.3 for an example of such an element.

The documentation of yr.no does not explain why this distinction was made; in SmartHome-
Weather, in both cases the data from yr.no are transformed to descriptions of weather situations
for periods of time (cf. Section 6.2.1).

38 CHAPTER 3. WEATHER DATA

The content of an XML document returned by yr.no covers a period of nine days, starting at
the current day.

3.5 Position of the sun

Besides location-based weather data, some weather services including yr.no offer an interface for
retrieving sunrise and sunset data [159]. Given a position in latitude and longitude together with
a date, the times of rise and set of sun and moon are provided. The elevation angle of the sun at
solar noon is also given.

In SmartHomeWeather, the position of the sun is specified by azimuth angle and direction.
For data about the sun’s position to be of any value, it is necessary that the position is known for
every Weather state. Although it may be possible to calculate the sun’s position from sunrise and
sunset times and the sun’s elevation angle at noon, this leads to unnecessary development effort.

Furthermore, most of the weather services that are available via Internet do not offer any data
about the sun’s position. Hence, it was concluded that the data provided by weather services
describing the position of the sun are inappropriate for the use within the SmartHomeWeather
ontology. Instead, the sun’s position is provided by one of some well-known algorithms.

There are several algorithms available for calculating the sun’s position (specified by zenith
and azimuth angles) at a certain location given by latitude and longitude at a certain time; two of
them are:

• The Solar Position Algorithm (SPA) [160] provides results for zenith and azimuth angles
with uncertainties of less than 0.0003 degrees in the period from 2000 BC to 6000 AD.
However, the algorithm is complicated to implement. Hence, it is used only in contexts
that require values of that precision.

• An algorithm that can be implemented more easily is the PSA algorithm [161], named
after Plataforma Solar de Almería [162] (a centre for the exploration of the use of solar
energy situated in the Province of Almería in Spain) where the algorithm was developed.
The results provided by this algorithm differ from the actual values more than the results
calculated by the SPA: For the period between 1999 and 2015, the differences per value
are guaranteed to be smaller than 0.01 degrees. As this level of accuracy is sufficient
for use in a smart home, the PSA algorithm is suitable for use by the Weather importer
application (see Section 6.2.1). A ready-to-use implementation of the PSA algorithm in
C++ is available; this implementation can easily be ported to Java.

3.6 Conclusion

The findings in this chapter provide the basis for the design of SmartHomeWeather in Chapter 5
and the development of a reference implementation for the import of weather data from an Internet
weather service into SmartHomeWeather in Chapter 6: Section 3.1 presents the competency
questions the ontology shall answer. Section 3.2 and Section 3.3 discuss which data is available
from local weather sensors and Internet weather services. In Section 3.3.2 yr.no is determined to

3.6. CONCLUSION 39

be the weather service which suits the requirements of smart homes best; Section 3.4 describes
its API in detail. Eventually, Section 3.5 presents the PSA algorithm which is used to provide
SmartHomeWeather with data about the position of the sun.

Although yr.no is selected to develop a reference implementation for the import of weather
data, the source of weather data shall remain replaceable. The ontology is designed in a way that
makes switching to another weather service simple. If yr.no is to be replaced by another weather
service, the ontology remains unchanged; only the program that imports weather data must be
adapted. If the weather service used does not support one or more weather elements specified in
the ontology, they are simply omitted in the program’s output.

The ontology supports the following weather elements (in no particular order):

• Temperature,

• relative humidity,

• dew point,

• cloud cover,

• chance and intensity of precipitation,

• speed and direction of wind,

• atmospheric pressure,

• solar radiation,

• the position of the sun, and

• the overall weather condition.

Except the position of the sun, all elements are available from many Internet weather services
and weather sensors. This data is not obtained from any sensor or service; instead, it is calculated
using the PSA algorithm (see Section 3.5).

In case a weather service does not provide a value for the dew point, there are simple means
available for calculating that value from the values of temperature and relative humidity. For
instance, the following formula leads to a dew point value with an accuracy sufficient for smart
homes [163]:

td ≈ t−
(
100−RH

5

)
td represents the dew point temperature, t the air temperature, and RH the relative humidity

in percent (i.e. in the interval [0, 100]). Analogously, the value of relative humidity can be
calculated from the values of dew point and temperature using the same method (the case that
the temperature value is missing, but values of dew point and relative humidity are available is
unlikely).

40 CHAPTER 3. WEATHER DATA

Competency question Weather element(s)
What is the current weather situation? all available elements
What will the weather situation be in one
hour, in two hours, . . . , in 24 hours?

all available elements

What is the current temperature, humidity,
wind speed, . . . ?

the corresponding weather element

What will be the temperature, humidity,
wind speed, . . . in one hour, in two hours,
. . . , in 24 hours?

the corresponding weather element

What will be the minimum temperature, hu-
midity, . . . over the next 24 hours? What
about maximum values?

the corresponding weather element

Will the weather change? Will the tempera-
ture, humidity, . . . rise or fall?

the corresponding weather element

Does it rain? Will it rain in the next hours?
Will it rain today?

Precipitation

Will there be sunshine today? Cloud coverage, solar radiation, sun posi-
tion

Do we need to irrigate the garden? Precipitation, cloud coverage, solar radia-
tion

Will there be severe weather? Wind, precipitation, temperature
Will temperature drop/stay below 0 ◦C? Temperature
When can we open windows and when do
we have to keep them shut?

Precipitation, wind

When do we need sun protection? Solar radiation, cloud coverage, sun posi-
tion

When will it outside be colder than inside
the house? When will it be warmer?

Temperature

Table 3.7: Assignment of competency questions to weather element(s).

As the atmospheric pressure decreases with increasing altitude above sea level, it is necessary
to convert the pressure value observed by a sensor to the equivalent pressure at sea level using the
Barometric formula [164]. This is not necessary for many Internet weather services (including
yr.no) as these often report a value that has already been converted.

To ensure the ontology can be used in the desired manner, it is necessary that the competency
questions from Section 3.1 can be answered by the ontology using the provided input data. As
seen in Table 3.7 which shows which competency questions can be answered by using which
weather element(s), all required data are available. Once the development of SmartHomeWeather
is completed, Section 5.7 will discuss whether the ontology can actually answer the competency
questions.

CHAPTER 4
Methodologies for developing

ontologies

There are numerous methodologies for building ontologies. As this chapter points out, all of
them strive for avoiding common pitfalls [165] and try to minimise the need for refactorisation
at later development steps. Each approach forces the ontology designer to determine as many
details about the ontology’s domain as early as possible.

All methodologies have in common that knowledge acquisition is centred around competency
questions that roughly define a scope for the ontology and details about that scope [166]. Com-
petency questions are stated at the very beginning of the design process and provide the basis
for all further steps towards the ontology. The ontology can be considered complete if it is able
to provide answers to all competency questions (except the ones that cannot be answered by an
ontology).

In the article about their approach towards ontology design, Noy and McGuinness state three
fundamental rules [104] of ontology design. Although the authors only apply them to their own
approach, they hand out advice for many design decisions, regardless of which approach is used
for the design of the ontology:

1) There is no one correct way to model a domain – there are always viable alterna-
tives. The best solution almost always depends on the application that you have in
mind and the extensions that you anticipate.

2) Ontology development is necessarily an iterative process.

3) Concepts in the ontology should be close to objects (physical or logical) and
relationships in your domain of interest. These are most likely to be nouns (objects)
or verbs (relationships) in sentences that describe your domain. [104]

This chapter discusses some existing methodologies for the construction of ontologies.
Among the methodologies that can be found in literature, the ones discussed as candidates for the
design of SmartHomeWeather are

41

42 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

• the one by Uschuld and King [105] (Section 4.2.1),

• the methodology used by Grüninger and Fox for the TOVE (TOronto Visual Enterprise)
ontologies [106] (Section 4.2.2),

• Ontology 101 by Noy and McGuinness [104] (Section 4.2.3),

• the UPON (Unified Process for ONtology building) methodology by De Nicola, Missikoff,
and Navigli [167] (Section 4.2.4), and

• METHONTOLOGY by Gómez-Pérez et al. [107] (Section 4.2.5).

There are several other methodologies that are not covered here, such as Model Driven
Ontology [168], the NeOn Methodology [169], the approach of Berneras et al. in the context of
the Esprit KACTUS project [170], the methodology based on the SENSUS ontology [171], and a
method [172] based on Formal Concept Analysis [173].

4.1 Evaluating ontology development methodologies

The evaluation in this chapter is loosely based on the article by Fernández-López that evaluates a
set of methodologies for building ontologies [174]. There are several other articles that cover this
topic [175–177].

For each methodology, the following topics are discussed in Section 4.2:

• Description: Each step of the methodology is presented.

• Applications: Some ontologies that have been developed using the methodology are
enumerated, if any. Applications may include both cases where the methodology was
just applied to provide detailed insights into the methodology itself and cases where the
methodology was used for the development of an ontology as part of a project.

• Analysis: The methodology is analysed regarding a pre-defined set of criteria:

– Effort: Different approaches lead to different efforts for the development of ontolo-
gies. Although the minimisation of the effort is not a target of SmartHomeWeather, it
is unnecessary to apply an approach which leads to an enormous development effort
compared to other methodologies.

– Usage: If an approach is widely used, this may indicate that the approach is consid-
ered suitable for ontology development by many designers. The other way, a rarely
applied methodology may be inappropriate for most use cases.

– Applicability: An approach may be limited to certain kinds of domains and may
therefore be unsuitable for designing SmartHomeWeather.

– Strictness: Due to the fact that there is not a single way to correctly design an
ontology, every approach must leave a certain margin to the ontology designer to
decide about implementation details. However, a margin being too wide may lead to
an inaccurate or incomplete ontology.

4.2. THE ONTOLOGY DEVELOPMENT APPROACHES 43

– Formality: The ontology design process can reside on an informal level (the ontology
and all artefacts created during development are described using natural language,
in tables, and in diagrams), a formal level (all aspects of the ontology are described
using the logical model of the ontology language the ontology is intended to be
implemented in), or anything in between.

– Level of detail: The level of detail of the description of the design process can range
from giving just an overview to a level describing every step in a very detailed manner.

– Documentation: One methodology may enforce the creation of documentation while
others may delegate the decisions about how the documentation is structured and
what is documented to the ontology designer. This may lead to missing, inaccurate,
or incomplete documentation.

Section 4.2.6 compares the methodologies and comes to a decision regarding the methodology
which fits the requirements of SmartHomeWeather best and thus is used for the development of
the ontology. It is possible that this decision is not unambiguous if more than one approach turns
out to be suitable for the present context.

As Section 4.2 focuses on the characteristics of the methodologies required to take a decision
in favour of one of the approaches, Section 4.3 then describes the selected approach in a more
detailed manner.

4.2 The ontology development approaches

4.2.1 Methodology by Uschold and King

Description

When Uschold and King published their approach in 1995 [105], it was among the first method-
ologies proposed towards the development of new ontologies.

This approach divides ontology development into a set of stages, as depicted in Figure 4.1:

• Identify Purpose: At the very beginning, the purpose of the ontology needs to be identified:
Why is the ontology built, what are its intended uses, and what is its scope? A set of
competency questions is formulated.

• Building the Ontology: This stage is divided into three sub-stages:

– Ontology Capture: Concepts and relationships are identified and textually defined.
Furthermore, terms which refer to these concepts and relationships are defined.

– Ontology Coding: In this step, the representation of the ontology from the Ontol-
ogy Capture stage is transformed into a formal (ontology) language (e.g. OWL),
presumably using an ontology development environment (such as Protégé).

– Integrating Existing Ontologies: As the ontology being developed partly covers the
scope of already existing ontologies, research has to be done which ontologies can be
reused.

44 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

Ontology
Capture

Ontology
Coding

Integrating
Existing

Ontologies

Identifying
Purpose

Building the Ontology

Evaluation Documentation

Figure 4.1: The workflow proposed by the methodology by Uschold and King [105].

• Evaluation: During this stage, it is verified whether the ontology has the ability to fulfil the
purpose that was initially identified.

• Documentation: Finally, all results from the previous stages must be documented thor-
oughly. This approach does not enforce documentation throughout the development
process; this may lead to incomplete, inaccurate, or missing documentation.

As this approach is one of the first comprehensive methodologies for ontology development,
it lacks the experience that has been gathered by ontology designers over the recent years. The
descriptions of the proposed steps hardly explain any details. However, its overall structure
matches most of the later approaches; furthermore, it is an easily comprehensible approach.

Applications

There are various applications of this methodology. Some examples include the Enterprise
Ontology which models the domain of business enterprises [178] (probably the most prominent
example based on this methodology), the e-Business Model Ontology that covers processes found
in businesses available over the Web [179], and the LKIF Core Ontology of Basic Legal Concepts
(Legal Knowledge Interchange Format) [180].

Analysis

• Effort: The effort caused by using this approach can be considered to be low, compared to
other approaches such as METHONTOLOGY (see Section 4.2.5) or the UPON methodology
(refer to Section 4.2.4).

• Usage: There are several applications of this approach which qualify the approach to be
suitable for many different knowledge domains.

4.2. THE ONTOLOGY DEVELOPMENT APPROACHES 45

Motivating
Scenarios

Informal
Competency
Questions

First-Order
Logic:

Terminology

Formal
Competency
Questions

First-Order
Logic:
Axioms

Completeness
Theorems

Figure 4.2: The workflow proposed by the TOVE methodology [106].

• Applicability: There are no restrictions regarding the application of this approach to
various domains.

• Strictness: The approach does not describe a strict process; there are wide margins for
individual decisions by the ontology designer. However, this renders decisions possible
that may affect the functionality of the ontology in a negative way.

• Formality: This is an informal approach involving natural language descriptions.

• Level of detail: The description of this approach does give an overview, but it does not go
into the details of each step.

• Documentation: The process proposed by this approach includes a Documentation step;
however, it does not enforce the creation of documentation artefacts throughout the devel-
opment process. Additionally, no details about how to structure the documentation are
defined.

4.2.2 Methodology by Grüninger and Fox (TOVE)

Description

When Grüninger and Fox began designing their TOVE (TOronto Visual Enterprise) Enterprise
Modelling project based on ontologies, they failed to identify an already existing approach
towards ontology development that would suit their needs. In order to overcome this problem,
they formulated their own approach [106].

This approach splits the ontology development process into a set of activities as shown in
Figure 4.2:

• The Motivating Scenarios are a set of use cases the ontology is used for.

• These scenarios lead to Informal Competency Questions which are a set of questions that
the ontology shall be able to answer once it is completed.

46 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

• First Order Logic: Terminology: In this step, the terminology is specified using first-order
logic (or the logic used by the intended ontology language) [21]. The terms (objects,
attributes, and relations) are derived from the previously formulated competency questions.

• Then, the competency questions are transformed into Formal Competency Questions in
terms of entailment and consistency problems with respect to the axioms in the ontology.

• First Order Logic: Axioms: Now, formal axioms are stated that define the terms and
constraints on objects in the ontology using first-order logic.

• Finally, Completeness Theorems are defined which are used to prove whether the ontology
is complete (i.e. it can provide answers to all competency questions).

Once all these steps are completed, the formal model is implemented using an ontology
language (e.g. OWL).

Applications

Examples for the application of this methodology are the ontology of virtual humans [181], an
ontology for software maintenance [182], and an ontology that forms the base of an expert system
for corporate financial rating [183].

Analysis

The approach proposed by Grüninger and Fox is a rather formal one that is based on first-order
logic which forms the base of many ontology languages.

• Effort: Putting all parts of the ontology being developed into a formal model in first-order
logic may turn out to be a tedious task which involves far more effort compared to other
approaches.

• Usage: Several applications of this approach can be found in literature. However, there are
approaches such as METHONTOLOGY (see Section 4.2.5) or the approach by Uschold
and King (see Section 4.2.1) that are far more popular than this approach.

• Applicability: There are no limits regarding the domains this approach can be used with.
The formal approach using first-order logic does not introduce any limitations as the data
models of many ontology languages (including OWL) are based on Description Logics
which are subsets of first-order logic.

• Strictness: This approach defines a strict procedure to follow, but leaves a margin for
individual design decisions by the ontology developer.

• Formality: This is a rather formal approach that involves definitions based on the logic
used by the ontology language that is intended to be used.

• Level of detail: The description of this approach gives details about each step, but leaves a
margin for the ontology developer who follows the approach.

4.2. THE ONTOLOGY DEVELOPMENT APPROACHES 47

• Documentation: This approach does not enforce the creation of documentation; hence
problems regarding missing, incomplete, or inaccurate documentation may arise when
applying this approach.

4.2.3 Ontology 101

Description

In their paper Ontology Development 101: A Guide to Creating Your First Ontology [104], Noy
and McGuiness present an informal and rather intuitive approach for building ontologies from
scratch. It is geared towards people without or with little prior knowledge about how to design an
ontology and qualifies for demonstrating the essence of ontologies.

The approach is divided into a set of steps:

1. The domain and scope of the ontology are determined. The preferred way for this is to
formulate competency questions the ontology should be able to answer.

2. Existing ontologies are considered to be reused to avoid doing work that has already been
done and to simplify interoperability with other ontologies.

3. Important terms in the ontology are enumerated, i.e. a glossary of terms is built.

4. From the glossary in the previous step, all terms that are classes are identified. They are
then related to each other in order to create a class hierarchy.

5. The next step iterates over all classes and tries to identify terms from the glossary which
are properties of the classes.

6. Then, for the properties the ranges of possible values are specified.

7. Finally, instances from the glossary are selected and added to the ontology.

These steps are not strictly performed one after the other; instead, an iterative process is
proposed which iterates the whole set of steps repeatedly. Figure 4.3 depicts the workflow of this
process.

Besides the approach itself, Ontology 101 provides a huge set of rules of thumb which guide
the ontology designer towards a well-conceived ontology, advise her of common pitfalls, and
help identify both adequate and improper patterns.

Applications

Applications of Ontology 101 include a Human Community Ontology [184], an Ontology for
Intrusion Detection [185], and an ontology which is part of BioPAX, an effort towards improving
knowledge exchange in the research of biological pathways [186].

48 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

Step 1: Determine domain and scope of the ontology (competency questions)

Step 2: Consider reusing existing ontologies

Step 3: Generate a glossary of terms

Step 6: Define ranges for properties

Step 7: Define instances

Basic idea for ontology

Step 4:
Define classes and their hierarchy

Step 5:
Define properties

Completed ontology

Ontology not yet completed

Figure 4.3: The workflow proposed by Ontology 101 [104].

Analysis

Ontology 101 provides a simple and coherent approach for building ontologies. However, it also
comes with a few downsides.

• Effort: The effort of applying Ontology 101 to a certain domain can be considered to be
low.

• Usage: The methodology is very often cited in literature to give readers an understanding
of the basics of ontology development. However, compared to other methodologies, the
number of applications is low.

• Applicability: Ontology 101 does not state any limitations regarding the use of its approach
for arbitrary domains.

• Strictness: The approach does not enforce strict rules and leaves a broad margin to the
ontology designer.

4.2. THE ONTOLOGY DEVELOPMENT APPROACHES 49

Cycles Phases Workflows

Construction

Transition

Elaboration

Inception Requirements

Analysis

Design

ImplementationTest

Cycle 3

...

Cycle 1

Cycle 2

Iterations

Iteration 3

...

Iteration 1

Iteration 2

Figure 4.4: The workflow proposed by the UPON methodology [167].

• Formality: This is a completely informal approach that does not involve any work with
formal models.

• Level of detail: The description of this approach gives details about each step, but leaves a
margin for the ontology developer who follows the approach.

• Documentation: Ontology 101 completely lacks a description on how documentation is
generated; this may lead to missing, incomplete, or inaccurate documentation.

4.2.4 The UPON methodology

Description

De Nicola, Missikoff, and Navigli observed many similarities between creating software artefacts
and the development of ontologies [167]. Therefore, they developed the UPON (Unified Process
for ONtology) methodology which takes advantage of the Unified Process [187] and the Unified
Modeling Language (UML) [188], both known from software development.

As the Unified Process, UPON is use-case driven, iterative, and incremental. As shown in
Figure 4.4, the UPON process consists of cycles, phases, iterations, and workflows. The whole
process is divided into cycles which each result in a new version of the ontology. Four different
phases (inception, elaboration, construction, and transition) form each cycle. Each phase in
turn is divided into an arbitrary number of iterations; during each iteration, five workflows
(requirements, analysis, design, implementation, and test) take place.

During the inception phase, requirements are captured. The elaboration phase comprises
the identification and structuring of fundamental concepts. The construction phase involves the
creation of elements in the ontology to be created. Eventually, in the transition phase testing and
evaluation of the work within this cycle take place.

The requirements workflow consists of a set of tasks which analyse the knowledge domain;
scope and purpose of the ontology, relevant terms, related use cases, and competency questions

50 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

are identified. These results are the input for the analysis workflow which refines concepts and
their relations and enriches their description with detailed definitions in order to create a reference
glossary. The goal of the design workflow is to model concepts, concept hierarchies, and domain-
specific relationships from the previously created reference glossary for their later implementation.
During the implementation workflow, the ontology designed in the previous workflow is translated
into an ontology language. Finally, the test workflow involves the evaluation of the ontology for
semantic quality (the absence of contradictory concepts) and pragmatic quality (the usefulness of
the ontology for the user).

Each of these steps includes the generation of one or more documentation artefacts (e.g.
diagrams or tables) that document the results. Hence, once the UPON process is completed, both
the ontology and its documentation are completed and match each other. Documentation is not
implemented as a separate step to avoid any problems that may arise from such an approach.

Applications

UPON has been applied to create four different ontologies in the context of the Athena Integrated
Project [189]. Furthermore, applications of UPON include an ontology representing word mean-
ing [190], an ontology for mapping individuals and their relationships in a social network [191],
and the LD-CAST reference ontology which is part of a project that aims at developing a semantic
cooperation and interoperability platform for the European Chambers of Commerce [192, 193].

Analysis

The UPON approach is a deeply structured approach that applies well-established technologies
from software development to the field of ontology design. While this approach leads to well-
designed ontologies and works well for developing ontologies within large environments, in the
case of SmartHomeWeather this is possibly an over-engineered approach.

• Effort: Due to its process which consists of many single steps generating a huge number of
artefacts, the application of the UPON methodology leads to a greater effort compared to
other approaches such as METHONTOLOGY (see Section 4.2.5). The smaller the ontology
to be developed is, the larger the difference becomes. As SmartHomeWeather can be
considered to be a rather small ontology, UPON may be unsuitable for its design.

• Usage: The paper proposing the UPON methodology [167] gets cited often; however,
due to its enormous effort, it is harder to find actual projects using it compared to other
approaches.

• Applicability: There are no limitations regarding the application of this approach to
various domains.

• Strictness: The UPON approach is a very strict process, but nevertheless leaves some
margin to the ontology designer for individual design decisions.

• Formality: This is an informal approach.

4.2. THE ONTOLOGY DEVELOPMENT APPROACHES 51

States

Conceptualisation

Planification

Activity

Knowledge Acquisition

Documentation

Evaluation

Activities

Formalisation Integration

Specification

Implementation

Maintenance

Figure 4.5: States and activities in the life cycle of an ontology according to METHONTOL-
OGY [107].

• Level of detail: The description of this approach is very detailed.

• Documentation: Every step during the design process involves the generation of docu-
mentation artefacts.

4.2.5 METHONTOLOGY

Description

METHONTOLOGY partitions the development process of an ontology into several activities,
as shown in Figure 4.5: Planification, specification, knowledge acquisition, conceptualisation,
formalisation, integration, implementation, evaluation, documentation, and maintenance.

Planification is the step of creating a plan which tasks need to be performed at which time
during the development of an ontology. Such a plan is proposed by METHONTOLOGY itself.
Hence, when following METHONTOLOGY , ontology construction starts with specification (by
creating an Ontology Requirements Specification Document) and knowledge acquisition about the
given domain from all available sources. Conceptualisation then generates a set of diagrams and
tables that describe different aspects of the ontology. These artefacts are the glossary of terms,
diagrams showing the concept taxonomies, binary relation diagrams, the concept dictionary, and
tables for binary relation details, instance attributes, class attributes, constants, formal axioms,
rules, and instances.

The integration activity consists of research regarding already existing ontologies which may
be reused. Afterwards, implementation transforms the previously described model into the desired
ontology language. Finally, evaluation ensures that the ontology that has been implemented
corresponds to its specification.

Important to note about METHONTOLOGY is the absence of documentation as a separate
development step. Each of the other activities enforces the creation of one or more artefacts
(diagrams or tables) which precisely document the results of this step. During the implementation

52 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

activity, all required information about the ontology is taken from these artefacts. Hence, when all
other steps are completed, the documentation is ready as well. Any problems regarding missing,
incomplete, or inaccurate documentation are avoided.

Applications

Applications of METHONTOLOGY include the Legal Ontology [194], the Chemical Ontol-
ogy [195], the Graduation Screen Ontology [196], the Ontology for Metabolic Pathways [197],
the Vehicles’ Ontology for checking the consistency of official documents in eGovernment [198],
the ontology for a context-aware semantic approach for the effective selection of an assistive
software [199], and a cartographic ontology [200]. Some ontology designers opted for an ap-
proach that combines METHONTOLOGY with another approach, e.g. for the development of
an educational ontology [201] using a combination of METHONTOLOGY and a Model Driven
Approach [202]. For the development of an ontology in the hydrographical domain [203], the
designers combined the top-down approach of METHONTOLOGY with a bottom-up approach
based on Formal Concept Analysis [173].

Analysis

• Effort: Compared to Ontology 101, the effort of METHONTOLOGY is higher, but far
below the effort that arises when applying the UPON approach from Section 4.2.4.

• Usage: METHONTOLOGY is one of the most widely used approaches for developing
ontologies. This may indicate that it is considered by many ontology developers to be well
suited for many domains.

• Applicability: There are no limits regarding the domains METHONTOLOGY can be used
for.

• Strictness: METHONTOLOGY defines a procedure to follow, but leaves a margin for
individual design decisions by the ontology developer.

• Formality: This is an informal approach.

• Level of detail: The description of this approach is very detailed.

• Documentation: METHONTOLOGY enforces the generation of documents which docu-
ment the ontology at the time when the proposed steps are performed; documentation is
not a step which has to be performed separately. Hence, METHONTOLOGY avoids many
problems regarding the documentation.

4.2.6 Summary

The Sections 4.2.1 to 4.2.5 give detailed insights into some popular methodologies for developing
ontologies from scratch. Table 4.1 summarises the main advantages and disadvantages of these
approaches that have been identified in the previous section.

4.3. METHONTOLOGY 53

Methodology Advantage(s) Disadvantage(s)
Uschold and King Simple, straight-forward ap-

proach
Documentation not enforced
Shallow descriptions

TOVE Evaluation for completeness Documentation not enforced
Tedious formal approach

Ontology 101 Simple and easily comprehen-
sible approach
Low effort

Documentation not enforced
Seldom used

UPON Incorporates best practices
from software development

Huge development effort

METHONTOLOGY Widely used
Documentation is enforced

-

Table 4.1: Advantages and disadvantages of the ontology design methodologies discussed in
Section 4.2.

Considering the characteristics of the development approaches, METHONTOLOGY is chosen
for building the SmartHomeWeather ontology. The main reasons for that decision are:

• Compared to other approaches, the effort of following this methodology is acceptable.

• The approach of METHONTOLOGY enforces the generation of documentation in order to
avoid problems regarding missing, incomplete, or inaccurate documentation.

• It is widely used for the development of a variety of ontologies. This implies that many
ontology developers consider it suitable for the application on many different domains.

Chapter 5 describes the process of building the SmartHomeWeather ontology using METHON-
TOLOGY in detail.

4.3 METHONTOLOGY

As Section 4.2.6 opts for METHONTOLOGY as the methodology to be used for developing
SmartHomeWeather, this section presents METHONTOLOGY in a more detailed manner.

The inventors of METHONTOLOGY , Gómez-Pérez et al., perceived absence of a clear
engineering approach towards building an ontology from scratch. Hence, they described a process
for developing ontologies and specified a life cycle for ontologies. Based upon that, they defined
METHONTOLOGY as a straight-forward engineering approach for building ontologies [107].

Several papers describe METHONTOLOGY itself [107, 204, 205], while others discuss
applications of METHONTOLOGY in the development of ontologies (see Section 4.2.5).

While the overall approach is the same in all of these articles, there are slight differences
regarding the details of each step. For developing the SmartHomeWeather ontology in Chapter 5,

54 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

a variant of METHONTOLOGY is used that does not exactly match the methodology presented
in any of the papers and combines aspects from several papers.

4.3.1 Ontology development process and life cycle

The ontology development process used by METHONTOLOGY divides the process into the
following activities that need to be performed [107]:

• Planification: This step involves creating a plan regarding which tasks need to be done
and how they are arranged. As METHONTOLOGY already proposes such a plan, this step
is omitted when following METHONTOLOGY to design an ontology.

• Specification: The purpose, intended uses, and end-users of the planned ontology are
specified in an Ontologies Requirements Specification Document.

• Knowledge acquisition: Knowledge about the ontology’s domain is acquired.

• Conceptualisation: The knowledge previously acquired is conceptualised into a model
that describes the problem that shall be solved by the ontology and how the ontology is
intended to solve it.

• Formalisation: This conceptual model is then formalised.

• Integration: As ontologies are built to be reused, as many existing ontologies as possible
are to be integrated into the new ontology.

• Implementation: The ontology is then implemented using a formal language.

• Evaluation: Throughout the process of building the ontology, it is continuously evaluated
in order to ensure it meets the previously specified requirements.

• Documentation: The ontology and all documents belonging to it must be well documented.

• Maintenance: It may be necessary to apply modifications throughout the lifetime of the
ontology.

These activities – which are depicted in Figure 4.5 – are arranged into the step of planification
that must be performed at the very beginning of development, a set of stages (consisting of
specification, conceptualisation, formalisation, integration, implementation, and maintenance)
which the ontology moves through during its creation, and some activities (knowledge acquisition,
documentation, and evaluation) that are performed throughout the whole development process in
parallel to the stages.

Differently to what is shown in Figure 4.5, METHONTOLOGY follows an evolving life cycle
model similar to the iterative-incremental approach that is used in the Spiral Model in software
development [206]. This life cycle model allows the ontology to grow according to its needs.
Whenever it is necessary, pieces of the ontology can be added, modified, and deleted. Thus, one
state does not have to be completely finished before the next state is begun. The ontology cycles
through each state numerous times until the ontology meets all requirements and the results of
each step correspond to each other.

4.3. METHONTOLOGY 55

4.3.2 The METHONTOLOGY approach

This section describes METHONTOLOGY as a well-defined approach to perform all activities
mentioned above.

For each of the activities, only ideas behind them are covered, but their application is omitted.
They are applied in Chapter 5 where METHONTOLOGY is used to create the SmartHomeWeather
ontology.

Each section that describes an activity involving the creation of some documentation artefact
(e.g. a table or a document), a template for the respective artefact is presented.

Specification

METHONTOLOGY defines a precise approach for the development of an ontology. It specifies
certain activities that need to be performed, how these activities are performed, and in which
order. Thus, the activity of planification is completed by specifying METHONTOLOGY itself and
the ontology developer is exempted therefrom. Hence, the first step of developing an ontology
from scratch is specification

During specification, an Ontology Requirements Specification Document is generated. This
document is written in natural language using a set of intermediate representations or using
competency questions. It should include

• the name and the purpose of the ontology, its scope, its intended uses, and possible end-
users,

• a list of functional requirements (describing the intended functionality of the ontology) and
non-functional requirements (describing all intended properties of the ontology not directly
related to its functionality), and

• a list of terms that specifies the scope of the ontology.

Figure 4.6 shows a template of an Ontology Requirements Specification Document [205].

Knowledge Acquisition

Most of knowledge acquisition is done simultanously with the specification phase. It is one of the
most important activities and needs to be performed thoroughly as most other activities heavily
depend on it.

Sources of knowledge are experts, books, handbooks, figures, tables, and even other ontolo-
gies. Knowledge is collected using techniques such as brainstorming, interviews, formal and
informal analysis of texts, and knowledge acquisition tools.

Conceptualisation

The state of conceptualisation consists of several tasks as shown in Figure 4.7 [194]. Again,
the figure shows the tasks in a sequential manner. However, as METHONTOLOGY uses an
evolutionary process model, the steps are performed numerous times.

56 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

ONTOLOGY REQUIREMENTS SPECIFICATION DOCUMENT
Name: . . .
Purpose: . . .
Scope: . . .
Implementation language: . . .
Intended end-users: . . .
Intended uses: . . .
Ontology requirements: . . .

Non-functional requirements:

• . . .
Functional requirements:

• . . .

Pre-glossary of terms: . . .

Figure 4.6: Template for the Ontology Requirements Specification Document of METHONTOL-
OGY [205].

Task 1: Build glossary of terms

Task 2: Build concept taxonomies

Task 3: Build ad-hoc binary relation diagrams

Task 4: Build concept dictionary

Task 11: Describe instances

Task 5:
Describe ad-hoc
binary relations

Task 6:
Describe instance

attributes

Task 7:
Describe class

attributes

Task 8:
Describe
constants

Task 9:
Describe formal axioms

Task 10:
Describe rules

Figure 4.7: Tasks of the conceptualisation activity according to METHONTOLOGY [194].

4.3. METHONTOLOGY 57

Name Synonyms Acronyms Description Type
.

Table 4.2: Template for the glossary of terms as proposed by METHONTOLOGY .

Man Person Woman

is subclass of

is subclass of is subclass of

is subclass of

ParentFather Mother

is subclass of

is subclass of is subclass of

Figure 4.8: Example of a concept-classification tree as proposed by METHONTOLOGY .

Task 1: Glossary of Terms At first, a Glossary of Terms is built. This glossary includes all
the relevant terms of the domain (concepts, instances, attributes, relations etc.). It can be built
as a table having the columns name, synonyms, acronyms, description (for a natural language
description of the term), and type (specifying whether the term is a concept, an instance, an
attribute, a relation etc.). Table 4.2 shows a template for the glossary of terms.

Task 2: Concept Taxonomies Once the glossary of terms contains a sizeable number of
concepts, these ontologies are arranged in one or more taxonomies that define the concept
hierarchy.

METHONTOLOGY proposes the use of four taxonomic relations:

1. Subclass-Of: If a concept B is a Subclass-Of a concept A, every instance of B is also an
instance of A.

2. Disjoint-Decomposition: A Disjoint-Decomposition of a concept C is a set of subclasses
of C such that an instance of one of these subclasses can never be a subclass of another
of these subclasses, while an instance of C is not necessarily an instance of one of its
subclasses.

3. Exhaustive-Decomposition: An Exhaustive-Decomposition of a concept C is a set of
subclasses of C such that every instance of C is an instance of at least one of its subclasses.

4. Partition: A Partition of C is a set of subclasses of C such that every instance of C is an
instance of exactly one of its subclasses.

The concept taxonomies are visualised in concept-classification trees which are diagrams
that depict the concepts and their taxonomic relations. See Figure 4.8 for an example of a
concept-classification tree. In case the ontology contains a large number of concepts, the tree
may be split into several diagrams in order to keep the trees clear.

58 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

Person

Father Mother

is father of

has father

has mother

is mother of

Figure 4.9: Example of a binary relations diagram as proposed by METHONTOLOGY .

Name Instances Relations Class attributes Instance attributes
.

Table 4.3: Template for the concept dictionary as proposed by METHONTOLOGY .

Relation
name

Source
concept

Target
concept

Maximum
source
cardinality

Inverse
relation

.

Table 4.4: Template for the binary relations table as proposed by METHONTOLOGY .

Task 3: Ad-hoc binary relation diagrams In the next step, ad-hoc binary relation diagrams
are created. These diagrams show all ad-hoc relationships between concepts of the same (or
different) concept taxonomies. See Figure 4.9 for an example of a binary relation diagram.

Task 4: Concept dictionary The concept dictionary contains all domain concepts together
with their relations, their instances, their class attributes (i.e. attributes that describe properties
of classes), and their instance attributes (i.e. attributes that describe properties of instances). All
information from the previous steps contributes to this dictionary. The concept dictionary is
again being built as a table having appropriate columns for all required information. Like the
concept-classification trees, this table may be split into a set of smaller tables if the ontology
contains a large number of concepts. Table 4.3 shows a template for the concept dictionary.

Task 5: Ad-hoc binary relation details In this step, for all ad-hoc binary relations their details
are specified in a tabular manner. The resulting table has a row for each relation and columns
named relation name, source concept, source cardinality (max), target concept, inverse relation.
Table 4.4 shows a template for the binary relations table.

Task 6: Instance attributes This step leads to an instance attributes table. That is a table of all
instance attributes that are listed in the concept dictionary. Each row contains the description of
one instance attribute. An instance attribute is an attribute that describes a property of an instance
of a concept. Its value may be different for each instance of the concept.

The columns of the table are attribute name, concept name, value type (Integer, Float,
String, etc.), value range, unit of measurement, minimum cardinality, and maximum cardinality.

4.3. METHONTOLOGY 59

Attribute
name

Concept
name

Value type Value
range

Unit Cardinality
(min, max)

.

Table 4.5: Template for the instance attributes table as proposed by METHONTOLOGY .

Super-concept Sub-concept attribute name attribute value(s)
.

Table 4.6: Template for the class attributes table as proposed by METHONTOLOGY .

Constant name Value type Value Measurement
unit

.

Table 4.7: Template for the constants table as proposed by METHONTOLOGY .

Additionally, the following information may be specified: instance attributes, class attributes, and
constants used to infer values of the attribute; attributes that can be inferred using values of this
attribute; formulae or rules that allow inferring values of the attribute; and references used to
define the attribute. See Table 4.5 for a template for the instance attributes table.

Task 7: Class attributes All class attributes that are listed in the concept dictionary are
described in detail in the class attributes table. Each row describes one class attribute. The
columns are super-concept, sub-concept (i.e. the name of the concept where the attribute is
defined), attribute name, and attribute value(s). Additionally, all information about related
instance attributes, class attributes, constants, rules, and formulae may be specified that are
described in the instance attribute as well. Table 4.6 shows a template for the class attributes
table.

Task 8: Constants In this step, the constants table is created that specifies details about all the
constants listed in the glossary of terms. Each constant is specified by its name, its value type, its
value, the measurement unit for numerical constants, and the attributes that can be inferred using
the constant. Table 4.7 shows a template for the constants table.

Task 9: Formal axioms In this task, the ontology designer must determine whether the ontol-
ogy contains formal axioms. In case it contains any, these axioms must be defined precisely in
a formal axioms table. For each axiom, this table specifies the name, a description in natural
language, the logical expression that formally describes the axiom in first-order logic (or the
logic the ontology language intended to use is based upon), and all concepts, attributes, relations,
and variables that are referred to in the logical expression. Table 4.8 presents a template for the
formal axioms table.

60 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

Axiom
name

Description Expression Referred
concepts

Referred
attributes

Referred
relations

Referred
variables

. .

Table 4.8: Template for the formal axioms table as proposed by METHONTOLOGY .

Instance name Concept name Attribute Value(s)
.

Table 4.9: Template for the instants table as proposed by METHONTOLOGY .

Task 10: Rules Similary to the task of identifying and describing formal axioms within the
ontology, in this step the ontology designer must determine whether the ontology contains any
rules. If it contains any, a rules table must be built to precisely describe all rules and their
properties: Their names, their descriptions, expressions in first-order logic, and all concepts,
attributes, relations, and variables involved. In contrast to formal axioms, the expression of rules
always has the form if <conditions> then <consequent>; hereby <conditions> is a conjunction
of atoms while <consequent> is a single atom.

For the rules table, the template for the formal axioms table (see Table 4.8) can be reused.

Task 11: Instances Within an ontology, a set of instances may be predefined. This task involves
listing these individuals, again in tabular manner. The columns of this instances table are the
name of the instance, the name of the concept, and all of the instance’s attributes together with
their respective values. Table 4.9 depicts a template for the instances table.

Formalisation

Formalisation is the transition from the informal description of the tables and diagrams in the
previous step of conceptualisation into the chosen ontology language, e.g. OWL. As this is tightly
coupled with the implementation of the ontology (see Section 4.3.2), this is a task which is often
not performed separately.

Integration

As ontologies are built for reuse and the wheel shall not be reinvented during the creation of
a new ontology, the ontology designer searches for existing ontologies. The goal is to import
ontologies that already define terms that are part of the ontology currently being developed.

Implementation

The task of implementing the ontology in an ontology language requires an environment that
supports the ontologies selected in the integration step. Features that should be provided by such
an environment are [107]:

4.3. METHONTOLOGY 61

• a lexical and syntactic analyser to guarantee the absence of lexical and syntactic errors,

• an editor for adding, modifying, and removing definitions,

• a browser for inspecting the library of ontologies and their definitions,

• a searcher for looking for the most appropriate definitions,

• evaluators for detecting incompleteness, inconsistencies, and redundant knowledge, and

• an automatic maintainer for managing the inclusion, removal, or modification of existing
definitions.

Together with the implementation, the information about the ontology gathered during the
process described in Section 4.3.2 is now formalised into the formal model of the ontology
language being used.

In the case of the SmartHomeWeather ontology, an OWL ontology [19] is created using
Protégé [60] together with the Pellet reasoner [61].

Evaluation

During evaluation, verification takes place whether all artefacts that have yet been created or
updated in the previous steps satisfy the requirements that have been initially defined. evaluation is
not an activity which is performed at the very end of the development process; instead, evaluation
takes place whenever an artefact (a diagram, a table, or the implementation of the ontology) is
created or updated in order to ensure that mistakes are found as soon as possible.

The completed ontology must fulfil all functional and non-functional requirements listed
in the Ontology Requirements Specification Document presented in Section 4.3.2. In case of a
mismatch, the ontology traverses the activities of the life cycle (conceptualisation, formalisation,
integration, implementation, and evaluation) once more.

There may be requirements that an ontology is unable to fulfil due to certain limitations, e.g.
the Open World Assumption [55]. For instance, OWL, which honors the Open World Assumption,
cannot tell the absence of an instance of some concept. This leads to cases where an ontology
fails to answer a competency question such as “Does this group only consist of women?”; just
because the ontology does not contain an individual which is a man, it does not mean that there is
no man; the ontology can only tell that there is no man it knows about.

Evaluation (and specification) must hereby take limitations into account which affect ontolo-
gies or the ontology language being used.

Documentation

During the steps described above, a set of documents is compiled. If generated properly and
accurately, these documents describe every detail of the ontology. Using this approach, METHON-
TOLOGY forces the ontology designer to document throughout the development process. Any
problems that come with incomplete or wrong documentation are avoided [207].

62 CHAPTER 4. METHODOLOGIES FOR DEVELOPING ONTOLOGIES

Hence, in METHONTOLOGY , documentation is an activity that is not performed explicitly.
Once the development process has finished, both the ontology and its documentation are ready to
use.

Maintenance

At any time in the future, changes to the ontology may become necessary. A modification of the
ontology’s requirements may be one reason; inaccurateness that occurred during the ontology
development process may be another reason.

Whenever a change is necessary, the ontology again cycles the states of specification, concep-
tualisation, formalisation, integration, and implementation repeatedly until all requirements are
met and all artefacts generated in these states correspond to each other. Knowledge acquisition
and evaluation are also again performed throughout all of these states.

4.4 Conclusion

The previous sections in this chapter present five different well-known approaches towards the
development of a new ontology from scratch. Besides giving an overview of the development
process proposed by each of the approaches, Section 4.2 enumerates existing applications of each
approach. Furthermore, all five approaches are examined regarding a set of eight characteristics
(which have previously been defined in Section 4.1) in order to identify their special features and
shortcomings.

Section 4.2.6 summarises the advantages and disadvantages of the approaches discussed.
Due to its straight-forward approach, the enforcement of creating thorough and complete doc-
umentation, and the high number of known applications, the decision is made in favour of
METHONTOLOGY . Section 4.3 focuses on the development process proposed by METHON-
TOLOGY and describes all details that are relevant for the development of SmartHomeWeather.

Chapter 5 describes the application of METHONTOLOGY on the domain of weather-based
predictive control in smart homes to develop the SmartHomeWeather ontology.

CHAPTER 5
The SmartHomeWeather ontology

The previous chapters cover all topics that require discussion before being able to build a new
ontology from scratch: Chapter 3 discusses all details about weather data that is necessary and
reasonable for the SmartHomeWeather ontology, what data will be used and where to obtain it.
Chapter 2 gives an overview about existing ontologies in the domain of weather data. As none of
the existing ontologies being discussed fits the needs of a weather data ontology for smart homes,
a new ontology is to be designed. Chapter 4 analyses some of the most popular approaches for
building ontologies from scratch. Among those, METHONTOLOGY [107] is identified to be the
best suitable approach.

Based on these insights, this chapter describes the process of designing the SmartHome-
Weather ontology in detail. The development process follows the steps proposed by METHON-
TOLOGY as described in Section 4.3.

Concept

Blank node

Instance

Literal

ns:hasSomeValue

rdf:type

ns:abcns:xy rdf:subPropertyOf

Figure 5.1: Example diagram.

63

64 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

5.1 Conventions

All diagrams in this chapter showing parts of an ontology adhere to the following conventions, as
seen in the example diagram shown in Figure 5.1. These conventions have already been adhered
to in Chapter 2:

• Concepts are drawn as ellipses filled with the color #99CCFF.

• Instances are drawn as ellipses filled with the color #87E776.

• Blank nodes are drawn as ellipses filled with the color #23B8DC.

• Literals are drawn as rectangles filled with the color #FFFF66 .

• Properties in the RDF [42] and RDFS [28] namespace are drawn as dashed lines. Their
captions are written in italics.

• Properties in other namespaces are drawn as solid lines. Their captions are not written in
italics.

Every ontology should stick to a set of naming conventions that are explicitly stated [104].
The conventions for SmartHomeWeather are as follows:

• Two concepts, instances and/or properties may not have the same identifier as this is
required by OWL [19]1 and avoids confusion.

• Two identifiers may not use names that only differ in their capitalization. Using both
Weather State and weather state in the name namespace is possible in OWL, but leads to
confusion.

• Identifiers may only consist of upper and lower case ASCII letters (A to Z and a to z),
numerical digits from 0 to 9 and spaces, i.e. all identifiers must match the regular expression
^[A-za-z0-9]+$.

• Concepts have an identifier that is in singular case and starts with an upper case letter.
Typically a concept’s identifier is a noun, e.g. Weather state or Weather report.

• Properties have an identifier that starts with a lower case letter and starts with the prefix
has or belongs to, followed by the name of the concept which is the property’s range. The
inverse property of a property having an identifier starting with has has an identifier starting
with belongs to, followed by the inverse property’s range. As an alternative to the prefix
belongs to, the prefix is in conjunction with the suffix of and the inverse property’s domain
may be used.

For instance, the name of a property with the domain Weather report and the range Weather
state has the name has weather state. If has weather state has an inverse property, it will
have the name belongs to weather report or is weather state of.

1Using one identifier for more than one concept, instance, or property is possible in OWL if an adequate number
of namespaces is used. However, SmartHomeWeather uses a single namespace.

5.2. SPECIFICATION 65

5.2 Specification

Specification, the first step proposed by METHONTOLOGY , aims at creating an Ontology
Requirements Specification Document using natural language. It adheres to the approach discussed
in Section 4.3 and uses the document template taken presented in Section 4.3.2 [205].

ONTOLOGY REQUIREMENTS SPECIFICATION DOCUMENT

Name: SmartHomeWeather

Purpose: The ontology covers data about weather phenomena occurring at a certain location
somewhere on Earth between the present and 24 hours in the future. Weather data will be
acquired from both Internet services as well as from weather sensors mounted at the desired
location. This weather data will enable a smart home system using SmartHomeWeather to
make decisions based on current and future weather conditions.

Scope: The ontology has to cover a set of five core concepts from the domain of weather
data:
• Weather phenomenon: Represents a certain weather element. Relevant weather

elements are temperature, humidity, dew point, wind speed and direction, precipitation
intensity and probability, atmospheric pressure, cloud cover, solar radiation, and the
sun’s position.

• Weather condition: Overall state of the weather given by a simple verbal description:
sun, light clouds, partly cloudy, cloudy, fog, rain, snow, sleet, thunder.

• Weather state: Summarises all weather phenomena for a certain time.

• Weather report: Summarises all data acquired at a certain time about the current
weather or the weather some time in the future. Exactly one weather state is linked to
each weather report.

• Weather report source: Source where the data belonging to a weather report has been
obtained from (either an Internet weather service or a local weather sensor).

Implementation language: The ontology is implemented in OWL 2 [19] using Protégé [60]
and the Pellet reasoner [61].

Intended end-users: The end-users of SmartHomeWeather are ontology-based smart home
systems.

Intended uses: The ontology shall provide knowledge to ontology-based smart home
systems about the current and future weather state in order to enable the system to make
decisions based on that knowledge.

Ontology requirements:

66 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

Non-functional requirements:

• The ontology must adhere to the naming conventions presented in Section 5.1 regard-
ing the identifiers that are used for classes, properties, and individuals.

• The ontology must be documented thoroughly in order to make it easily reusable.

• The ontology must re-use existing ontologies wherever possible.

Functional requirements: The functional requirements are covered by the competency
questions that the ontology shall be able to answer (see Section 3.1):

• What is the current weather situation?

• What will the weather situation be in one hour, in two hours, . . . , in 24 hours?

• What is the current temperature, humidity, wind speed, . . . ?

• What will be the temperature, humidity, wind speed, . . . in one hour, in two hours,
. . . , in 24 hours?

• What will be the minimum temperature, humidity, . . . over the next 24 hours? What
about maximum values?

• Will the weather change? Will the temperature, humidity, . . . rise or fall?

• Does it rain? Will it rain in the next hours? Will it rain today?

• Will there be sunshine today?

• Do we need to irrigate the garden?

• Will there be severe weather?

• Will temperature drop/stay below 0 ◦C?

• When can we open windows and when do we have to keep them shut?

• When do we need sun protection?

• When will it outside be colder than inside the house? When will it be warmer?

Additionally, SmartHomeWeather shall be designed in a way that allows simple and
efficient OWL reasoning.

Pre-glossary of terms: These are terms that can be extracted from the competency questions,
in alphabetical order:
24 hours, airing, current weather, frost, future weather, humidity, humidity rise, humidity
fall, irrigation, minimum, maximum, rain, room temperature, severe weather, sunshine, sun
protection, temperature, temperature rise, temperature fall, weather change, wind speed.

5.3. KNOWLEDGE ACQUISITION 67

In the following sections, the SmartHomeWeather ontology is built in a way to meet all above
requirements, if possible. Section 5.7 evaluates if the resulting ontology fits the specification and
which shortcomings the ontology comes with.

5.3 Knowledge Acquisition

The second step proposed by METHONTOLOGY is Knowledge Acquisition. All knowledge
required to build the SmartHomeWeather ontology is presented in Chapter 2 and Chapter 3. These
chapters discuss in detail:

• Which weather data are relevant for smart homes?

• Which weather data are available from sensors (Section 3.2) and Internet services (Sec-
tion 3.3)? How can this data be acquired?

• Which data do not have any use for SmartHomeWeather due to being too complicated or
because they cannot be processed in an ontology in a useful way?

• What knowledge about weather in general is required to build an appropriate ontology (cf.
Chapter 3)?

Furthermore, Chapter 2 discusses existing ontologies that cover the domain of weather data.
An additional source of knowledge is available through works about weather in general, e.g. the
Glossary of Meteorology [110] by the American Meteorological Society [208].

5.4 Conceptualisation

In the third step of METHONTOLOGY , the Conceptualisation step, the domain knowledge is
structured into a conceptional model that describes the problem and its solution in terms of the
domain vocabulary that has been identified in the Specification process.

The starting point of Conceptualisation is a complete Glossary of Terms that covers all con-
cepts, instances, attributes, and binary relations that will form the ontology. Besides the glossary,
this section covers Concept-classification trees (Section 5.4.2), Binary relationship diagrams
(Section 5.4.3), Concept dictionaries (Section 5.4.4), Binary relations tables (Section 5.4.5),
Instance attribute tables (Section 5.4.6), Class attributes tables (Section 5.4.7), and Instances
tables (Section 5.4.8). Constant tables, Formal axiom tables, and Rules tables have been omitted
as the components described by these tables do not appear in SmartHomeWeather.

In this section, only those deliverables are presented that are necessary to fully understand
the structure of SmartHomeWeather. All tables that have only been created for the sake of
completeness can be found in Appendix A.1.

68 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

5.4.1 Glossary of Terms

When describing the scope of SmartHomeWeather, the Ontology Requirements Specification
Document in Section 5.2 mentions five top-level concepts (i.e. concepts that do not have a
superclass except Thing in OWL) of the ontology: Weather report, Weather state, Weather
phenomenon, Weather condition, and Weather source. All other concepts are sub-concepts of
these five concepts.

In this section, only a list of terms is given; the complete Glossary of Terms with short
descriptions of each term can be found in Appendix B.

Concepts: Section 3.6 presents the weather elements that are used in SmartHomeWeather. In
the ontology, weather elements are represented by concepts that are sub-concepts of Weather
phenomenon, e.g. there is a concept Temperature for measurements of temperature, or Humidity
for measurements of relative humidity.

For all weather elements except Dew point, categories are introduced in order to allow easy
differentiation of weather observations by their respective measurement values. In the case of
Temperature, the sub-concepts differ from each other by the observed temperature values. The
sub-concepts of Temperature are Frost (for an observed temperature value of below 0 ◦C), Cold (at
least 0 ◦C and less than 10 ◦C), Below room temperature (at least 10 ◦C and less than 20 ◦C), Room
temperature (at least 20 ◦C and at most 25 ◦C), Above room temperature (more than 25 ◦C and at
most 30 ◦C), and Heat (more than 30 ◦C). Refer to Section 5.4.2 for the concept-classification
trees that result from this approach including the definitions of the respective sub-concepts.

A Weather report can encapsulate data either about the current weather or about the weather
some time in the future which is specified by its Start time. Additionally, weather data can have
its origin at a set of weather sensors or at an Internet weather service. To take this into account, a
few sub-concepts of Weather report are introduced:

If the Weather report describes the current weather, it is a Current weather report; if it
describes the future weather, it is a Forecast weather report. Depending on how far the Weather
report’s Start time lies ahead, it is a Short range weather report (at most 3 hours in the future), a
Medium range weather report (more than 3 hours and less than 12 hours in the future), or a Long
range weather report (at least 12 hours in the future). Furthermore, there are sub-concepts of
Weather report, each having a Start time of 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours; these concepts
are named Forecast 1 hour weather report, Forecast 2 hours weather report etc., respectively.

If the source of weather data is a Sensor source, the corresponding Weather report is a
Weather report from sensor; otherwise (if the source of weather data is a Service source), it is a
Weather report from service.

A Weather report that is both a Current weather report and a Weather report from sensor is a
Current weather report from sensor. A Weather report that is both a Current weather report and
a Weather report from service is a Current weather report from service.

Several sub-concepts of Weather state describe certain combinations of instances of Weather
phenomenon being associated with a Weather state. These concepts are listed below; refer to the
glossary in Appendix B for their definitions. In the context of the concept-classification trees (see
Section 5.4.2), the ideas behind the sub-concepts of Weather state are discussed.

Thus, the concepts that can be found in SmartHomeWeather are:

5.4. CONCEPTUALISATION 69

• Weather condition.

• Weather phenomenon:

– Atmospheric pressure: Very low pressure, Low pressure, Average pressure, High
pressure, Very high pressure.

– Cloud cover: Clear sky, Partly cloudy, Mostly cloudy, Overcast, Unknown cloud
cover.

– Dew point.

– Humidity: Very dry, Dry, Average humidity, Moist, Very moist.

– Precipitation: No rain, Light rain, Medium rain, Heavy rain, Extremely heavy rain,
Tropical storm rain.

– Solar radiation: No radiation, Low radiation, Medium radiation, High radiation,
Very high radiation.

– Sun position: Day, Solar twilight, Sun below horizon, Twilight, Civil twilight, Nautical
twilight, Astronomical twilight, Night, Sun from north, Sun from east, Sun from south,
Sun from west.

– Temperature: Frost, Cold, Below room temperature, Room temperature, Above room
temperature, Heat.

– Wind: Directional wind, North wind, East wind, South wind, West wind, Calm, Light
wind, Strong wind, Storm, Hurricane.

• Weather report: Weather report from sensor, Weather report from service, Current weather
report, Current weather report from sensor, Current weather report from service, Forecast
weather report, Short range weather report, Medium range weather report, Long range
weather report, Forecast 1 hour weather report, Forecast 2 hours weather report, . . . ,
Forecast 24 hours weather report.

• Weather source: Sensor source, Service source.

• Weather state: Airing weather, Calm weather, Clear weather, Cloudy weather, Cold
weather, Dry weather, Fair weather, Hot weather, Moist weather, No awning weather,
No rain weather, Pleasant temperature weather, Rainy weather, Severe weather, Stormy
weather, Sun protection weather, Thunderstorm, Very rainy weather, Windy weather.

Relations: Instances of the concepts are associated to each other with binary relations, which
are:

• has source and is source of which connect instances of Weather report and Weather source.

• has weather state and belongs to weather report which connect instances of Weather report
and Weather state.

• has condition which connects instances of Weather state and Weather condition.

70 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

Weather
condition

Figure 5.2: Concept-classification tree for Weather condition.

• has weather phenomenon and belongs to state which connect instances of Weather state
and Weather phenomenon.

• has previous weather state and has next weather state which connect two instances of
Weather state.

The following relations link instances of concepts from other ontologies than SmartHome-
Weather to instances of concepts inside the ontology: has start time, has end time, has observation
time, and location.

The only data property in SmartHomeWeather is has priority which specifies an integer value
indicating which Weather report for a certain period of time is to be preferred over another
Weather report for the same period of time.

Individuals: The only predefined individuals are instances of the concept Weather condition;
they represent the overall state of the weather for a certain Weather state. These individuals are:
cloud, fog, light clouds, partly cloudy, rain, sleet, snow, sun, and thunder.

5.4.2 Concept-classification trees

As stated in Section 5.4.1, there are five top-level concepts; all other concepts are sub-concepts
of these top-level concepts. As a consequence, each of these concepts becomes root of a tree of
concepts. These Concept-classification trees are presented in this section.

Weather condition

A Weather condition does not have any sub-concepts. Hence, its classification tree which is
shown in Figure 5.2 consists of only one element.

Weather phenomenon

A Weather phenomenon represents a certain weather element. Every specific weather element
is a sub-concept of Weather phenomenon; the evolving tree is shown in Figure 5.3. For sake of
clarity, this tree is broken up to several diagrams; all sub-concepts of sub-concepts of Weather
phenomenon are not shown in Figure 5.3. There is a separate diagram for each sub-concept of
Weather phenomenon:

• Atmospheric pressure (Figure 5.4): Depending on the pressure value, an instance of At-
mospheric pressure is an instance of exactly one of its sub-concepts: Very low pressure

5.4. CONCEPTUALISATION 71

Weather
phenomenon

rdfs:subClassOf

Atmospheric
pressure

Cloud cover

Precipitation

Temperature

Wind

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Dew point

rdfs:subClassOf

Humidity

rdfs:subClassOf

Sun position

rdfs:subClassOf

Solar radiation

rdfs:subClassOf

Figure 5.3: Concept-classification tree for Weather phenomenon.

Atmospheric
pressure

rdfs:subClassOf

Average
pressure

Very high
pressure

High pressure

Very low
pressure

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

Low pressure

rdfs:subClassOf

Figure 5.4: Concept-classification tree for Atmospheric pressure.

(pressure value below 998 hPa), Low pressure (at least 998 hPa and less than 1008 hPa), Av-
erage pressure (at least 1008 hPa and less than 1018 hPa), High pressure (at least 1018 hPa
and less than 1028 hPa), and Very high pressure (at least 1028 hPa).

• Cloud cover (Figure 5.5): The sub-concepts of Cloud cover are defined using different
cloud coverage values. In SmartHomeWeather, the cloud coverage is specified using a
measurement unit named okta which is commonly used in meteorology [110]. okta is a
numeric value that describes how many eights of the sky are covered by clouds. In addition
to the values from 0 okta to 8 okta, there is a special value (9 okta) which is used in case the
cloud coverage is unknown (e.g. if the view of the sky at a weather station is obstructed).

SmartHomeWeather defines five sub-concepts of Cloud cover which are Clear sky (cloud
coverage of 0 okta), Partly cloudy (1 okta to 4 okta), Mostly cloudy (5 okta to 7 okta),
Overcast (8 okta) and Unknown cloud cover (9 okta).

72 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

Cloud
cover

rdfs:subClassOf

Unknown
cloud cover

Mostly cloudy

Overcast

Clear sky

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

Party cloudy

rdfs:subClassOf

Figure 5.5: Concept-classification tree for Cloud cover.

Humidity

rdfs:subClassOf

Average
humidity

Very moist

Moist

Very dry

rdfs:subClassOf

rdfs:subClassOf
rdfs:subClassOf

Dry

rdfs:subClassOf

Figure 5.6: Concept-classification tree for Humidity.

• Humidity (Figure 5.6): The sub-concepts of Humidity are Very dry (value of relative
humidity of less than 30 percent), Dry (at least 30 percent and less than 40 percent),
Average humidity (at least 40 percent and at most 70 percent), Moist (more than 70 percent
and at most 80 percent), and Very moist (more than 80 percent).

• Precipitation (Figure 5.7): The sub-concepts of Precipitation are No rain (precipitation
intensity of 0mm/h), Light rain (precipitation intensity of more than 0mm/h and at most
5mm/h), Medium rain (precipitation intensity of more than 5mm/h and at most 20mm/h),
Heavy rain (precipitation intensity of more than 20mm/h and at most 50mm/h), Extremely
heavy rain (precipitation intensity of more than 50mm/h and at most 100mm/h), and
Tropical storm rain (precipitation intensity of more than 100mm/h). For No rain, the
precipitation probability is 0; for the other sub-concepts, the precipitation probability is
greater than 0.

• Solar radiation (Figure 5.8): In this case, the sub-concepts are No radiation (solar radiation
value of 0W/m2), Low radiation (solar radiation value of more than 0W/m2 and less than
250W/m2), Medium radiation (solar radiation value of more than 250W/m2 and less than

5.4. CONCEPTUALISATION 73

Precipitation

rdfs:subClassOf

Medium rain

Tropical
storm rain

Extremely
heavy rain

No rain

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf
Light rain

rdfs:subClassOf

Heavy rain

rdfs:subClassOf

Figure 5.7: Concept-classification tree for Precipitation.

Solar
radiation

rdfs:subClassOf

Medium
radiation

Very high
radiation

High radiation

No radiation

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

Low radiation

rdfs:subClassOf

Figure 5.8: Concept-classification tree for Solar radiation.

500W/m2), High radiation (solar radiation value of more than 500W/m2 and less than
750W/m2), Very high radiation (solar radiation value of more than 750W/m2).

• Sun position (Figure 5.9): There are sub-concepts that are defined depending on the sun’s
direction, while others are defined depending on the sun’s elevation above horizon:

– Those depending on the direction are Sun from north (direction of at least 0◦ and at
most 45◦ or of more than 315◦ and less than 360◦), Sun from east (direction of more
than 45◦ and at most 135◦), Sun from south (direction of more than 135◦ and at most
225◦), and Sun from west (direction of more than 225◦ and at most 315◦).

– The sub-concepts defined via the elevation angle are Day (elevation angle of at least
0◦ and at most 90◦), Solar twilight (elevation angle of at least 0◦ and less than 6◦), Sun
below horizon (elevation angle of at least −90◦ and less than 0◦), Twilight (elevation
angle of at least −18◦ and less than 0◦), Civil twilight (elevation angle of at least −6◦
and less than 0◦), Nautical twilight (elevation angle of at least −12◦ and less than
−6◦), Astronomical twilight (elevation angle of at least −18◦ and less than −12◦),

74 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

Sun
positionrdfs:subClassOf

Sun below horizon

Sun from north

Night

Day

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Solar twilight

rdfs:subClassOf

Twilight

rdfs:subClassOf

Sun from east

Sun from south

Sun from west

rdfs:subClassOf

rdfs:subClassOf

Civil twilight

Nautical twilight

Astronomical
twilight

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Figure 5.9: Concept-classification tree for Sun position.

Temperature

rdfs:subClassOf

Below room
temperature

Heat

Above room
temperature

Frost

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Cold

rdfs:subClassOf

Room
temperature

rdfs:subClassOf

Figure 5.10: Concept-classification tree for Temperature.

and Night (elevation angle of at least−90◦ and less than−18◦). Refer to the Glossary
of Meteorology for the definitions of the different states of twilight [110].

• Temperature (Figure 5.10): The sub-concepts of Temperature are Frost (temperature value
below 0 ◦C), Cold (at least 0 ◦C and less than 10 ◦C), Below room temperature (at least
10 ◦C and less than 20 ◦C), Room temperature (at least 20 ◦C and at most 25 ◦C), Above
room temperature (more than 25 ◦C and at most 30 ◦C), and Heat (more than 30 ◦C).

• Wind (Figure 5.11): As for Sun position, there are two types of sub-concepts of Wind –

5.4. CONCEPTUALISATION 75

Wind

rdfs:subClassOf

Storm

North wind

Directional wind

Calm

rdfs:subClassOf

Light wind

rdfs:subClassOf

Hurricane

rdfs:subClassOf

East wind

South wind

West wind

rdfs:subClassOf

rdfs:subClassOf

Strong wind

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Figure 5.11: Concept-classification tree for Wind.

those defined by the wind speed and those defined by the wind direction:

– If an instance of Wind has the property has wind direction, it is defined to be an
instance of Directional wind. This concept in turn has four sub-concepts: North wind
(wind direction of at least 0◦ and less than 45◦ or of at least 315◦ and less than 360◦),
East wind (at least 45◦ and less than 135◦), South wind (at least 135◦ and less than
225◦), and West wind (at least 225◦ and less than 315◦).

– Depending on the wind speed, there are the sub-concepts Calm (wind speed of at least
0m/s and less than 1m/s), Light wind (at least 1m/s and less than 10m/s), Strong
wind (at least 10m/s and less than 20m/s), Storm (at least 20m/s), and Hurricane (at
least 32m/s).

There is no separate diagram for Dew point as that concept does not have any sub-concepts;
hence its concept-classification tree consists of a single node.

Refer to Section A.1 in the appendix for a tabular display of the sub-concepts of Weather
phenomenon.

Weather report

A Weather report has two attributes that define its main characteristics: has start time and has
source. As discussed in Section 5.4.1, a number of sub-concepts is defined in order to reflect
different values of these two attributes. The resulting concept-classification tree is shown in
Figure 5.12.

76 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

Weather
report

rdfs:subClassOf

Weather report
from service

Weather report
from sensor

rdfs:subClassOf

Forecast
weather report

Current weather
report from sensor

Short range
forecast

rdfs:subClassOf

rdfs:subClassOf

Current
weather report

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Current weather
report from service

Medium range
forecast

Long range
forecast

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Figure 5.12: Concept-classification tree for Weather report.

The concepts Short range weather report, Medium range weather report, and Long range
weather report each do have sub-concepts which have been omitted from the above diagram for
clarity. These sub-concepts are:

• Short range weather report: Forecast 1 hour weather report, Forecast 2 hours weather
report, and Forecast 3 hours weather report for weather reports describing the weather in
one, two and three hours, respectively.

• Medium range weather report: Forecast 6 hours weather report and Forecast 9 hours
weather report for weather reports describing the weather in 6 and 9 hours, respectively.

• Long range weather report: Forecast 12 hours weather report, Forecast 15 hours weather
report, Forecast 18 hours weather report, Forecast 21 hours weather report, and Forecast
24 hours weather report for weather reports describing the weather in 12, 15, 18, 21, and
24 hours, respectively.

Weather source

A Weather source can either be a Sensor source or a Service source (see Figure 5.13).

Weather state

A Weather state represents the set of weather phenomena that belong to a certain Weather report.
In order to emphasise certain combinations of instances of Weather phenomenon being linked to

5.4. CONCEPTUALISATION 77

Weather
report source

rdfs:subClassOf

Service source Sensor source

rdfs:subClassOf

Figure 5.13: Concept-classification tree for Weather source.

Weather state

Calm weather

Clear weather

Cloudy weather

Cold weather

Dry weather
Hot weather

Moist weather

No rain weather

Pleasant
temperature

weather

Rainy weather

Windy weather

Sun protection
weather

Fair weather

Airing weather

Very rainy
weather

No awning
weather

Severe weather
Stormy
weather

Thunderstorm

Figure 5.14: Concept-classification tree for Weather state. All properties are of type
rdfs:subClassOf.

the same instance of Weather state, several sub-concepts of Weather state are introduced (see
Section 5.4.1). The resulting tree is shown in Figure 5.14.

The idea behind this approach is to provide simple answers to some of the competency
questions. Apart from the concept Weather state, there are three ways how the concepts are
defined:

• Some concepts (Calm weather, Clear weather, Cloudy weather, Cold weather, Dry weather,

78 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

weather:CalmWeather rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (weather:WeatherState
[rdf:type owl:Class ;

owl:unionOf ([rdf:type owl:Restriction ;
owl:onProperty weather:hasWeatherPhenomenon ;
owl:someValuesFrom weather:Calm

]
[rdf:type owl:Restriction ;

owl:onProperty weather:hasWeatherPhenomenon ;
owl:someValuesFrom weather:LightWind

]
)

]
)

] .

Listing 5.1: Definition of the concept Calm weather in SmartHomeWeather in Turtle syntax.

:AiringWeather rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (:FairWeather
:PleasantTemperatureWeather

)
] .

Listing 5.2: Definition of the concept Airing weather in SmartHomeWeather in Turtle syntax.

Hot weather, Moist weather, No rain weather, Pleasant temperature weather, Rainy
weather, Stormy weather, and Very rainy weather) are defined as sub-concepts of Weather
state; additionally, an instance of Weather state must be related to certain instances of
Weather phenomenon and/or Weather condition to be an instance of one of these sub-
concepts. For instance, an instance of Calm weather is defined to be an instance of Weather
state having a property has weather phenomenon that relates an instance of Calm or Light
wind to it (see Listing 5.1 for the implementation in OWL).

Some sub-concept relationships of these concepts (e.g. Very rainy weather being a sub-
concept of Rainy weather) are inferred by the OWL reasoner.

• Some other concepts (Airing weather, Fair weather, and Severe weather) are defined as
either the union or the intersection of a set of other sub-concepts of Weather state, e.g.
Airing weather is the intersection of Fair weather and Pleasant temperature weather.
Hence, an instance of Weather state must be an instance of both Fair weather and Pleasant
temperature weather to be an instance of Airing weather (see Listing 5.2).

In the case of these concepts, the OWL reasoner does not infer any sub-concept relationships
that are not explicitly defined.

5.4. CONCEPTUALISATION 79

:SunProtectionWeather rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (:ClearWeather
[rdf:type owl:Restriction ;

owl:onProperty :hasWeatherPhenomenon ;
owl:someValuesFrom :Day

]
)

] .

Listing 5.3: Definition of the concept Sun protection weather in SmartHomeWeather in Turtle
syntax.

• All other concepts (No awning weather, Sun protection weather, Thunderstorm, and Windy
weather) are a combination of the first two ways to define the concepts, i.e. an instance
of one of these concepts is an instance of at least one other sub-concept of Weather state
and/or is related to one or more certain instances of Weather phenomenon and/or Weather
condition at the same time. For instance, an instance of Sun protection weather must be an
instance of Clear weather that is related to an instance of Day via the property has weather
phenomenon (see Listing 5.3).

Some sub-concept relationships of these concepts are again inferred by the OWL reasoner.

The definitions of all 19 sub-concepts of Weather state and their roles in the the ontologies
and in performing weather-related tasks in a smart home are presented below.

The sub-concepts of Weather state are (in alphabetical order):

• Airing weather is defined as the intersection of Fair weather and Pleasant temperature
weather. Airing weather describes a weather state that provides good conditions for airing:
The outside temperature is neither too low nor too high, there is no precipitation, no or
hardly any cloud cover, and at most light wind. For any other weather state, airing may be
possible as well, but some drawbacks may occur.

• Calm weather is a weather state describing no or at most light wind. An instance of Calm
weather is related to an instance of either Calm or Light wind via the property has weather
phenomenon. Calm weather is used to simplify the definition of Fair weather and to
answer wind-related competency questions, e.g. whether the windows may be opened.

• Clear weather describes either no cloud cover or at most light cloud cover. An instance of
Clear weather is related to an instance of either Clear sky or Partly cloudy via the property
has weather phenomenon. Clear weather is used to simplify the definitions of Fair weather
and Sun protection weather.

• Cloudy weather is a weather state describing heavy clouds. An instance of Cloudy weather
is related to an instance of either Mostly cloudy or Overcast via the property has weather

80 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

phenomenon. Although not recognised by OWL (due to the Open World Assumption), this
concept is the de-facto complement of Clear weather.

• Cold weather is a weather state describing a temperature that is far below room temperature.
An instance of Cold weather is related to an instance of either Cold or Frost via the property
has weather phenomenon; i.e. during the state of Cold weather, the outside temperature is
below 10 ◦C. At this temperature, it is probably necessary to heat the building.

• Dry weather describes a low value of relative humidity. An instance of Dry weather is
related to an instance of either Dry or Very dry via the property has weather phenomenon,
i.e. the relative humidity is below 40%. At this value of relative humidity, it may be
necessary to moisturise the air inside the building to ensure the inhabitants’ comfort.

• Fair weather is the intersection of Calm weather, Clear weather, and No rain weather.
Hence, Fair weather represents no cloud or at most light cloud cover, at most light wind,
and the absence of precipitation. The OWL reasoner infers an instance of Weather state
to be an instance of Fair weather if and only if it is an instance of Calm weather, Clear
weather, and No rain weather. Fair weather represents a weather situation where only
little adverse weather-related effects on the building are to be expected. Furthermore, the
concept Fair weather is used to simplify the definition of the concept Airing weather.

• Hot weather is a weather state describing a temperature that is far above room temperature.
An instance of Hot weather is related to an instance of Heat via the property has weather
phenomenon, i.e. during the state of Hot weather, the outside temperature is above 30 ◦C.
At this temperature, it is probably necessary to cool the building.

• Moist weather describes a high value of relative humidity. An instance of Moist weather
is related to an instance of either Moist or Very moist via the property has weather phe-
nomenon, i.e. the relative humidity is above 70%. At this value of relative humidity, it may
be necessary to dehumidify the air inside the building to maintain a certain level of comfort
for the inhabitants.

• No awning weather represents a weather state where all awnings should be retracted due to
safety reasons. No awning weather is the union of Severe weather and a Weather state that
is related to an instance of Strong wind via the property has weather phenomenon. Hence,
during the state of No awning weather, there is a storm together with heavy rain or strong
wind. The OWL reasoner infers No awning weather to be a sub-concept of Windy weather
and a super-concept of Severe weather.

• No rain weather represents the absence of precipitation, either because the precipitation
probability is 0 or the precipitation intensity is 0mm/h. An instance of Weather state is
defined to be an instance of No rain weather if and only if it is related to an instance of No
rain via the property has weather phenomenon. No rain weather is used to simplify the
definition of Fair weather and to help finding answers to precipitation-related competency
questions, e.g. whether irrigation of the garden is necessary.

5.4. CONCEPTUALISATION 81

• Pleasant temperature weather is a weather state representing a temperature just below, at,
or just above room temperature. Pleasant temperature weather is defined as a Weather state
that is related to an instance of Below room temperature, Room temperature, or Above room
temperature via the property has weather phenomenon, i.e. during the state of Pleasant
temperature weather, the outside temperature is at least 10 ◦C and at most 30 ◦C. At that
temperature, heating or cooling the building may not be necessary. Pleasant temperature
weather is used to simplify the definition of Airing weather.

• Rainy weather represents a weather state with precipitation. An instance of Weather state
is defined to be an instance of Rainy weather if and only if it is related to an instance of
Light rain, Medium rain, Heavy rain, Extremely heavy rain, or Tropical storm rain via the
property has weather phenomenon. Although not recognised by the OWL reasoner due to
the Open World Assumption, this weather state is the de-facto complement of No rain. As
No rain it can be used to answer competency questions related to precipitation. An OWL
reasoner infers Rainy weather to be a super-concept of Very rainy weather.

• Severe weather is a weather state that represents the combination of strong wind or storm
and heavy rain. Severe weather is defined as the intersection of Stormy weather and Very
rainy weather, i.e. severe weather involves a wind speed of more than 20m/s, a precipitation
probability greater than 0, and a precipitation intensity of above 20mm/h. By definition,
Severe weather is a sub-class of Stormy weather and Very rainy weather and a super-class
of Thunderstorm; an OWL reasoner additionally infers Severe weather to be sub-class of
No awning weather. Severe weather is used to answer competency questions such as “Will
there be severe weather?” and to simplify the definition of the concept Thunderstorm.

• Stormy weather is a weather state that represents storm, i.e. a wind speed of more than
20m/s. An instance of Weather state is defined to be an instance of Stormy weather if
and only if it is related to an instance of Storm via the property has weather phenomenon.
Stormy weather is used to answer wind-related competency questions and to simplify the
definition of the concepts Windy weather and Severe weather.

• Sun protection weather represents a weather state that requires covering elements of the
building that should not be exposed to direct sunlight; e.g. awnings should be extended.
An instance of Sun protection weather is defined to be an instance of Fair weather that is
related to an instance of Day via the property has weather phenomenon.

• Thunderstorm represents a state of severe weather including thunderstorms. An instance of
Weather state is defined to be an instance of Thunderstorm if and only if it is an instance
of Severe weather and is related to the individual Thunder via the property has condition.
Thunderstorm is designed for possible processes that need to be executed in a smart home
in the case of a thunderstorm event.

• Very rainy weather represents a weather state with heavy rain or snowfall. An instance
of Weather state is defined to be an instance of Very rainy weather if and only if it is
related to an instance of Heavy rain, Extremely heavy rain, or Tropical storm rain via the
property has weather phenomenon. Very rainy weather is suitable for providing answers

82 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

Weather reportWeather report
source

Weather state

Weather phenomenon

Weather condition

is source of

has source

has condition

has weather state
belongs to report

has weather phenomenon
belongs to state

has previous
weather state

has next
weather state

Figure 5.15: Binary relations diagram of SmartHomeWeather.

to precipitation-related competency questions; furthermore, Very rainy weather is used to
simplify the definition of Severe weather. An OWL reasoner infers Very rainy weather to
be a sub-concept of Rainy weather.

• Windy weather is a weather state that represents strong wind or storm. An instance of
Weather state is defined to be an instance of Windy weather if and only if it is an instance
of Stormy weather or it is related to an instance of Strong wind via the property has weather
phenomenon. Although not recognised by an OWL reasoner (due to the Open World
Assumption), Windy weather is the de-facto complement of Calm. By an OWL reasoner,
Windy weather is inferred to be a super-concept of No awning weather and Stormy weather.
As the concept Calm, Windy weather is used to answer wind-related competency questions.

No other sub-concepts of Weather state were introduced as no definitions could be identified
that would further help answering any of the competency questions.

5.4.3 Binary relations diagram

The purpose of a Binary relations diagram is to present all binary relations between concepts in
the ontology (see Figure 5.15).

5.4.4 Concept dictionaries

A Concept dictionary lists all concepts together with their names, instances, class attributes,
instance attributes, and relations. For the sake of clarity, this table is split up into several tables,
one for each of the concept-classification trees from Section 5.4.2.

The tables can be found in the appendix in Table A.1 (Weather condition, Weather state,
and Weather source) and Table A.2 (Weather phenomenon and Weather report). In these tables,
sub-concepts having the same instances, class attributes, instance attributes, and relations as their

5.5. INTEGRATION 83

super-concepts are omitted. Furthermore, any columns that are not filled with any content in any
row are omitted.

5.4.5 Binary relations table

The Binary relation table specifies all relations from Section 5.4.3 in detail. This includes the
relations’ names, their source and target concepts, their maximum source cardinalities, and their
inverse relations, if any. The table can be found in the appendix in Table A.3.

5.4.6 Instance attributes table

An Instance attributes table lists all instance attributes in SmartHomeWeather together with the
concept where they belong to, their value type and value range, the unit of measurement, and
their cardinality. The Instance attributes table can be found in the appendix in Table A.4.

The data types xsd:integer and xsd:decimal in the table refer to the types defined in XML
Schema [45]. For sake of simplicity, this table does not respect the usage of the Measurements
Unit Ontology (MUO) [96]. In the ontology, all attributes listed below that belong to a sub-concept
of Weather phenomenon do not refer to a literal as stated in Table A.4. Instead, they link to a
blank node of type Quality value which in turn has two attributes, one for the literal value (named
numerical value) and one for the unit (named measured in). The type given in the table below is
the type of the value the property numerical value refers to; see section 5.6.1 for details about the
implementation of MUO in SmartHomeWeather.

5.4.7 Class attributes table

Many concepts within the SmartHomeWeather ontology define themselves to be specializations
of other concepts (see Section 5.4.2 above), e.g. the concepts Very low pressure, Low pressure,
Average pressure, High pressure, and Very high pressure which are all sub-concepts of Atmo-
spheric pressure. They all differ by the value of the instance attribute has pressure value that
every instance of Atmospheric pressure has.

These concepts are summarised in the Class attributes table in the appendix in Table A.5,
Table A.6, Table A.7, and Table A.8. As in the Instance attributes tables in Section 5.4.6, this
table does not respect the use of MUO; no units are specified.

5.4.8 Instances table

The only pre-defined instances in SmartHomeWeather are the instances of the concept Weather
condition. Their details can be found in the Instance table in the appendix in Table A.9.

5.5 Integration

One of the goals when designing an ontology is to reuse existing ontologies where possible [22,23].
Chapter 2 sheds some light on a selection of existing ontologies around the domain of weather
data. In the domain of SmartHomeWeather, four areas have been identified where existing

84 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

ontologies may be reused. These areas are location data (Section 2.4.1), units of measurement
(Section 2.4.3), specifications of date and time (Section 2.4.2), and weather concepts (Section 2.3).

The following ontologies have been selected for the import into SmartHomeWeather:

• OWL-Time [75] is used for specifying temporal data (for date and time of a Weather report).

• The Basic Geo (WGS84 lat/long) Vocabulary [74] is used for specifying the location a
Weather report is valid for.

• The Measurement Units Ontology [96] (MUO) is used to enrich measurement values of
each Weather phenomenon with a unit (e.g. temperature in ◦C, rain in mm/h). Although
MUO does come with a few shortcomings (see Section 5.6), it is the ontology that has been
identified to be the the one that fits SmartHomeWeather’s requirements best.

• Unfortunately, no weather ontology has been identified that defines weather concepts in a
way that suits SmartHomeWeather’s requirements. Hence, SmartHomeWeather defines its
own concepts and properties for the domain of weather data.

Section 5.6.1 describes the reuse of the aforementioned ontologies within the SmartHome-
Weather ontology in detail.

5.6 Implementation

After exhaustive analysis and structuring in the previous sections, the step of implementing the
ontology has become a straight-forward task.

The SmartHomeWeather ontology is implemented in OWL using Protégé 4.3 together with
the Pellet OWL 2 Reasoner. Pellet includes Pellint [209], an ontology performance tool that uses
a set of patterns to find possible performance problems in an OWL ontology. Pellint has been used
intensively to ensure it does not report any problems that could affect reasoning performance.

To ensure that the reasoning of all sub-concepts of Weather phenomenon, Weather state, and
Weather report works correctly, JUnit [210] is used (see Section 6.3). Every test case loads the
SmartHomeWeather ontology using the Jena framework, adds appropriate individuals, and checks
using the Pellet reasoner if reasoning is performed in the desired manner.

During implementation of SmartHomeWeather in OWL, the identifiers of concepts, properties,
and instances in this document are modified by removing all space characters and concatenating
all parts of the identifier using camel case [211], e.g. Weather state becomes WeatherState
and has start time becomes hasStartTime. Hence, in the OWL implementation, all identifiers
match the regular expression ^[A-za-z0-9]+$.

5.6.1 Imported ontologies

During the implementation step, the ontologies listed in Section 5.5 need to be imported and
integrated. Their use necessitates the application of certain patterns required by these ontologies.

OWL-Time [75] defines the concept Temporal entity and its sub-concepts Instant and Interval,
both having a self-explanatory name. The properties has start time, has end time, and has

5.6. IMPLEMENTATION 85

Weather report Report
rdf:type

hasStartTime

0^^decimal

time:hasDurationDescription

time:hours

hasEndTime

1^^decimal

time:hasDurationDescription

time:hours

time:Interval

rdf:type

rdf:type

Figure 5.16: An instance of Current weather report together with Start time and End time.

observation time of Weather report link to instances of Temporal entity; however, only has
observation time is implemented to link an instance of Instant to a Weather report. For has start
time and has end time, instances of Interval are used. Such an instance represents the interval
between the Observation time and the time the Weather report is valid from/until (in hours). This
simplifies reasoning of the sub-concepts of Weather report which depend on the report’s Start
time; e.g. an instance of Forecast 1 hour weather report can be defined as an instance of Weather
report having a Start time of 1 (hours).

Figure 5.16 shows a Weather report together with its with Start time and End time; Figure 5.17
displays a Weather report together with its Observation time. The Time Zone Ontology that
comes with OWL-Time is not used by SmartHomeWeather; all times are given in UTC.

Figure 5.18 shows how an instance of Temperature would be implemented if no ontology for
units of measurements would be used. With the introduction of the Measurement Units Ontology
(MUO), the data property and the literal are removed; an object property that is a sub-property
of Quality value (which is defined by MUO) takes the place of the data property. It links to a
blank node which in turn has two properties: measured in and numerical value. The property
measured in is an object property that refers to the unit being used which is represented by an
instance of MUO’s concept Unit of measurement. Using the data property numerical value, the
literal is connected to the blank node. The resulting pattern is seen in Figure 5.19.

MUO is an ontology that is easy to implement in an already-existing ontology. Its major
drawback in the case of SmartHomeWeather is that it affects reasoning time negatively. Repeated

86 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

Weather report Report
rdf:type

hasObservationTime

time:inDateTime

2012^^gYear
time:year

14^^decimal

30^^decimal ---16^^gDay --06^^gMonth

time:Instant
rdf:type

time:hour

time:minute
time:day time:month

Figure 5.17: An instance of Weather report together with its Observation time
(2012-06-16 14:30).

Weather
phenomenon

temperature

17.2^^xsd:float

hasTemperatureValue

rdf:type

Figure 5.18: An instance of Temperature together with the property has temperature value
representing a temperature of 17.2 (without using a unit ontology).

Weather
phenomenon

temperature

17.2^^xsd:float

hasTemperatureValue

rdf:type

muo:numerical value

muo:Quality value
rdf:subPropertyOf

muo:Quality value
rdfs:subClassOf

muo:degree
Celsius

muo:measured in

muo:Unit of
measurement

rdf:type

Figure 5.19: An instance of Temperature together with the property has temperature value
representing a temperature of 17.2 ◦C (using MUO).

5.6. IMPLEMENTATION 87

Weather report Report
rdf:type

geo:location

48.21^^float 16.37^^float 171^^float

geo:point
rdf:type

geo:lat

geo:long

geo:alt

Figure 5.20: An instance of Weather report together with its location (Vienna, Austria: N 48.21◦,
E 16.37◦, 171m above MSL).

:WeatherPhenomenon rdf:type owl:Class .

Listing 5.4: Definition of Weather phenomenon in Turtle syntax.

tests showed that reasoning time increased by about 30% when introducing MUO. However, the
slowdown caused by MUO is accepted in favour of the usage of units of measurement.

Figure 5.20 shows how the location of a Weather report is encoded using the Basic (WGS84
lat/long) Vocabulary.

5.6.2 Reasoning

As required by the functional requirements presented in Section 5.2, SmartHomeWeather shall be
developed with simple and efficient OWL reasoning in mind.

The main use of OWL reasoning in SmartHomeWeather is the construction of the concept
hierarchies as discussed in Section 5.4.2; Weather phenomenon serves as an example in this
section. The hierarchy of Weather source is an exception as it is statically defined and is not
affected by reasoning.

Weather phenomenon is defined to be a concept (see Listing 5.4). Temperature is then
defined to be a Weather phenomenon which has a property has temperature value specifying a
temperature value (a numeric value of the type xsd:float) and its unit (degrees Celsius), as
seen in Listing 5.5. All other sub-concepts of Weather phenomenon are defined in a similar way.

Room temperature is defined analogously; in addition to Temperature, restrictions on the
temperature values are added (at least 20 ◦C and at most 25 ◦C), as seen in Listing 5.6. All other
sub-concepts of Temperature (Frost, Cold, Below room temperature, Above room temperature,
and Heat) are defined in the same way.

The OWL reasoner is then able to infer the following facts:

• Temperature is a sub-concept of Weather phenomenon and Room temperature is a sub-
concept of Temperature.

88 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

:Temperature rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (:WeatherPhenomenon
[rdf:type owl:Restriction ;

owl:onProperty :hasTemperatureValue ;
owl:someValuesFrom [rdf:type owl:Class ;
owl:intersectionOf ([rdf:type owl:Restriction ;

owl:onProperty muo:measuredIn ;
owl:hasValue temperature:degree-Celsius

]
[rdf:type owl:Restriction ;

owl:onProperty muo:numericalValue ;
owl:someValuesFrom xsd:float

])
]

]
)

] .

Listing 5.5: Definition of Temperature in Turtle syntax.

:RoomTemperature rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (:WeatherPhenomenon
[rdf:type owl:Restriction ;

owl:onProperty :hasTemperatureValue ;
owl:someValuesFrom [rdf:type owl:Class ;
owl:intersectionOf ([rdf:type owl:Restriction ;

owl:onProperty muo:measuredIn ;
owl:hasValue temperature:degree-Celsius

]
[rdf:type owl:Restriction ;

owl:onProperty muo:numericalValue ;
owl:someValuesFrom [rdf:type rdfs:Datatype ;
owl:onDatatype xsd:float ;
owl:withRestrictions ([xsd:minInclusive "20.0"^^xsd:float])

]
]
[rdf:type owl:Restriction ;

owl:onProperty muo:numericalValue ;
owl:someValuesFrom [rdf:type rdfs:Datatype ;
owl:onDatatype xsd:float ;
owl:withRestrictions ([xsd:maxInclusive "25.0"^^xsd:float])

]
])

]
]

)
] .

Listing 5.6: Definition of Room temperature in Turtle syntax.

5.6. IMPLEMENTATION 89

:WeatherReportFromService rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (:WeatherReport
[rdf:type owl:Restriction ;

owl:onProperty :hasSource ;
owl:someValuesFrom :ServiceSource

]
)

] .

Listing 5.7: Definition of Weather report from service in Turtle syntax.

• Any instance of Weather phenomenon that has an appropriate property of type has temper-
ature value is an instance of Temperature.

• Any instance of Weather phenomenon that has a property of type has temperature value
specifying a temperature value of at least 20 ◦C and at most 25 ◦C is an instance of both
Temperature and Room temperature.

• As has temperature value is a functional property, all pairs of sub-concepts of Temperature
are disjoint. This is especially important regarding the Open World Assumption as an
instance of one sub-concept is definitely known not to be an instance of another sub-
concept.

The hierarchy of Weather state is inferred in a similar way; refer to Section 5.4.2 for details
about how reasoning in that hierarchy works.

The hierarchy of Weather report emerges from the values two of the properties of Weather
report: has source and has start time. Depending on the type of the instance of Weather source
the property has source refers to, a Weather report is either a Weather report from sensor or a
Weather report from service (see Listing 5.7). Depending on the instance of Interval the property
has start time refers to, a Weather report is inferred to be an instance of Current weather report,
Forecast weather report, Short range weather report, Forecast 1 hour weather report etc. For
instance, Current weather report is defined as seen in Listing 5.8.

There are two sub-concepts of Weather report which depend on both has start time and has
source (Current weather report from sensor and Current weather report from service). Each
of them is defined as the intersection of two sub-concepts of Weather report that each depend
on one of the two sub-properties; e.g. Current weather report from sensor is defined to be the
intersection of Current weather report and Weather report from sensor. Thus, the OWL reasoner
infers Current weather report from sensor to be a sub-concept of both Current weather report
and Weather report from sensor.

Based on these reasoning capabilities in SmartHomeWeather, it is possible to provide answers
to some of the competency questions (cf. Section 5.7). To answer all of the questions, SWRL
rules and SPARQL queries may be implemented (see Section 5.8).

90 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

:CurrentWeatherReport rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (:WeatherReport
[rdf:type owl:Restriction ;

owl:onProperty :hasStartTime ;
owl:someValuesFrom [rdf:type owl:Restriction ;

owl:onProperty time:hasDurationDescription ;
owl:someValuesFrom [rdf:type owl:Restriction ;

owl:onProperty time:hours ;
owl:hasValue 0

]
]

]
)

] .

Listing 5.8: Definition of Current weather report in Turtle syntax.

5.7 Evaluation

After completing the implementation step, this section evaluates SmartHomeWeather regarding
all non-functional requirements and functional requirements from Section 3.1 and the Ontology
Requirements Specification Document in Section 5.2.

5.7.1 Non-functional requirements

There are three non-functional requirements:

• Naming conventions: All identifiers in SmartHomeWeather follow the naming conventions
stated in Section 5.1.

• Documentation: Due to following the METHONTOLOGY approach, the ontology is well
documented at every stage of development.

• Usage of other ontologies: SmartHomeWeather imports the Basic Geo (WGS84 lat/long)
Vocabulary, MUO, and OWL-Time; no ontology has been found that satisfies the require-
ments of SmartHomeWeather regarding concepts for weather data, thus SmartHomeWeather
defines its own concepts.

Thus, all non-functional requirements are met by SmartHomeWeather.

5.7.2 Functional requirements

As OWL reasoning has been an integral part of the implementation step (cf. Section 5.6.2), at
this point it is necessary to verify that SmartHomeWeather provides answers to all competency
questions; if all these questions are sufficiently covered, SmartHomeWeather meets all functional
requirements.

5.7. EVALUATION 91

This section evaluates if answers to the competency questions are provided and how answers
can be drawn from the ontology.

For the following questions, SmartHomeWeather can give straight answers:

• What is the current weather situation?

• What will the weather situation be in one hour, in two hours, . . . , in 24 hours?

• What is the current temperature, humidity, wind speed, . . . ?

• What will be the temperature, humidity, wind speed, . . . in one hour, in two hours, . . . , in
24 hours?

• Does it rain?

To answer any of these questions, the relevant instance of Weather report must be identified. Via
the property has weather state, an instance of Weather state is connected to it; this instance has
in turn an arbitrary number of has weather phenomenon properties each linking to an instance of
Weather phenomenon. The information from these instances of Weather phenomenon provide the
desired answer.

However, there are questions that cannot be answered by SmartHomeWeather as writing rules
to infer answers would be too complicated in OWL:

• Will the weather change? Will the temperature, humidity, . . . rise or fall?

• Do we need to irrigate the garden?

Furthermore, there are questions that cannot be answered using an OWL ontology due to
the Open World Assumption [55]. For instance, an OWL reasoner cannot determine that some
attribute value is the lowest one as it does not know whether there may be lower values it does
not know anything about; the reasoner only knows about the presence of individuals and attribute
values, but nothing about their absence.

• What will be the minimum temperature, humidity, . . . over the next 24 hours? What about
maximum values?

• Will it rain in the next hours? Will it rain today?

• Will there be sunshine today?

• Will there be severe weather?

• Will temperature drop/stay below 0 ◦C?

• When can we open windows and when do we have to keep them shut?

• When do we need sun protection?

• When will it outside be colder than inside the house? When will it be warmer?

92 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

However, for each of the above competency questions, whether a direct answer can be given
or not, SmartHomeWeather can provide all available data; an external program (which is not
limited by the Open World Assumption) can access this data and generate an answer. Section 5.8
presents examples of SPARQL queries and SWRL rules for answering the competency questions
the ontology itself does not give an answer for.

Hence, the ontology constructed in this chapter complies with its specification in Section 5.2.

5.8 SPARQL and SWRL

As previously stated, not all competency questions from the specification can be answered using
an OWL ontology alone; reasons are either that an appropriate construct in OWL would be too
complicated or that giving an answer using OWL is impossible at all due to the Open World
Assumption. To provide answers to these questions, SPARQL queries and/or SWRL rules can be
used.

These competency questions can be grouped into three categories of questions:

• What is the maximum or minimum value of temperature, humidity, . . . over a given period
of time?

• Will there be a weather state that satisfies certain conditions within a given period of time?

• Will the value of temperature, humidity, . . . rise or fall over a given period of time?

This section discusses how an answer for each of these categories can be determined using
SPARQL and/or SWRL.

In the following examples of SPARQL queries, any prefix definitions are omitted. SWRL rules
are presented in the syntax presented in Section 2.2 of the SWRL specification (“Human Readable
Syntax”) [59]; all prefixes are omitted for clarity.

5.8.1 Maximum and minimum values

The following example shows a SPARQL query to obtain the maximum temperature value stored
in the ontology; note that the query contains only the necessary triple patterns; any triple
patterns that are not necessary to obtain the desired result are omitted, e.g. it is not necessary
to ensure that ?p is an instance of weather:Temperature as the domain of the property
weather:hasTemperatureValue is defined to be weather:Temperature and therefore an
OWL reasoner can infer that ?p must be an instance of weather:Temperature.

SELECT (MAX(?t) AS ?t_max)
WHERE {

?p weather:hasTemperatureValue ?v.
?v muo:numericalValue ?t.

}

This query can be extended to obtain the maximum temperature value during the next three
hours. For this query to work, the query follows the property weather:belongsToWeather

5.8. SPARQL AND SWRL 93

State to reach the Weather state ?s that corresponds to the Weather phenomenon ?p; further-
more, weather:belongsToWeatherReport leads to the corresponding Weather report ?r.
Then a limitation on this Weather report’s start time is introduced.

SELECT (MAX(?t) AS ?t_max)
WHERE {

?p weather:hasTemperatureValue ?v.
?v muo:numericalValue ?t.
?p weather:belongsToWeatherState ?s.
?s weather:belongsToWeatherReport ?r.
?r weather:hasStartTime ?h.
?h time:hasDurationDescription ?d.
?d time:hours ?h.
FILTER (?h > "0"^^xsd:decimal).
FILTER (?h <= "3"^^xsd:decimal).

}

However, this query can be simplified as there is already a concept that resembles a Weather
report for the desired period of time (Short range weather report):

SELECT (MAX(?t) AS ?t_max)
WHERE {

?p weather:hasTemperatureValue ?v.
?v muo:numericalValue ?t.
?p weather:belongsToWeatherState ?s.
?s weather:belongsToWeatherReport ?r.
?r a weather:ShortRangeForecastReport.

}

5.8.2 Weather states satisfying certain conditions

In a similar way, instances of Weather phenomenon that satisfy a certain condition can be
found. For instance, the following query obtains all instances of Weather state that represent a
temperature of below 0 ◦C:

SELECT ?s
WHERE {

?s weather:hasWeatherPhenomenon ?p.
?p weather:hasTemperatureValue ?v.
?v muo:numericalValue ?t.
FILTER (?t < "0"^^xsd:decimal).

}

As the sub-concept Frost of Temperature already represents a temperature value of below
0 ◦C, the query can be shortened:

94 CHAPTER 5. THE SMARTHOMEWEATHER ONTOLOGY

SELECT ?s
WHERE {

?s weather:hasWeatherPhenomenon ?p.
?p a weather:Frost.

}

Restrictions about time and weather phenomena can be combined, e.g. to find all instances of
Weather state that represent a temperature of below 0 ◦C during the next three hours:

SELECT ?s
WHERE {

?s weather:hasWeatherPhenomenon ?p.
?p a weather:Frost.
?s weather:belongsToWeatherReport ?r.
?r a weather:ShortRangeForecastReport.

}

5.8.3 Rising and falling values of weather phenomena over time

To fetch all pairs of consecutive instances of Weather state using the property has next weather
state, this query can be used:

SELECT ?s1 ?s2
WHERE {

?s1 weather:hasNextWeatherState ?s2.
}

SPARQL 1.1 allows querying the transitive closure of an object property; the following query
yields all pairs of Weather states (?s1, ?s2) where ?s1 describes the weather state for an
earlier point of time than ?s2:

SELECT ?s1 ?s2
WHERE {

?s1 weather:hasNextWeatherState+ ?s2.
}

With these insights, it is possible to write the following query that returns all pairs of Weather
states that indicate an increasing temperature value over time, i.e. the temperature value of ?s2 is
higher than the temperature value of ?s1 while ?s2 describes a later weather state than ?s1:

5.8. SPARQL AND SWRL 95

SELECT ?s1 ?s2
WHERE {

?s1 weather:hasWeatherPhenomenon ?t1.
?t1 weather:hasTemperatureValue ?v1.
?v1 muo:numericalValue ?n1.
?s2 weather:hasWeatherPhenomenon ?t2.
?t2 weather:hasTemperatureValue ?v2.
?v2 muo:numericalValue ?n2.
?s1 weather:hasNextWeatherState+ ?s2.
FILTER (?n2 > ?n1).

}

In order to simplify the SPARQL queries that are required to provide answers to competency
questions, SWRL rules can be introduced; e.g. the following SWRL rules define the property
has later weather state (which has to be separately added to the ontology) which represents the
transitive closure of has next weather state:

hasNextWeatherState(?s1, ?s2) ⇒ hasLaterWeatherState(?s1, ?s2)

hasLaterWeatherState(?s1, ?s2) ∧ hasLaterWeatherState(?s2, ?s3) ⇒
hasLaterWeatherState(?s1, ?s3)

The following rule defines the semantics of a new property increasing temperature which
relates pairs of Weather states to each other in a way that indicates an increasing temperature
value over time:

hasWeatherPhenomenon(?s1, ?t1) ∧ hasTemperatureValue(?t1, ?v1) ∧ numericalValue(?v1, ?m1) ∧
hasWeatherPhenomenon(?s2, ?t2) ∧ hasTemperatureValue(?t2, ?v2) ∧ numericalValue(?v2, ?m2) ∧
greaterThan(?m2, ?m1) ∧ hasLaterWeatherState(?s1, ?s2) ⇒ increasingTemperature(?s1, ?s2)

Now, the query for all pairs of Weather states that indicate an increasing temperature value
over time can be simplified in the following way:

SELECT ?s1 ?s2
WHERE {

?s1 weather:increasingTemperature ?s2.
}

Eventually, using SWRL rules and SPARQL queries as shown above, answers to all compe-
tency questions from the specification of SmartHomeWeather can be provided.

CHAPTER 6
The Weather Importer

In the previous chapters, two topics are discussed that are relevant for this chapter: Chapter 3
discusses the details of weather services that are available via Internet, with the example of the
API by the Norwegian Meteorological Institute (yr.no) that is found to best fit the requirements
of the SmartHomeWeather project. Chapter 5 describes the design of the SmartHomeWeather
ontology. Eventually, the ontology needs to be populated with data, i.e. individuals that comprise
the current and future state of the weather at the desired location.

For that process, a standalone Java application has been developed. As its main purpose is to
import weather data, it was named Weather Importer.

At its current state of development, Weather Importer obtains data only from yr.no in order to
provide a reference implementation being both simple and functional, but it is designed to allow
the simple integration of other weather services that are available via Internet as well as data from
local weather sensors.

The classes are arranged in two packages, model and main. The model package contains
an object-oriented data model for the weather data being processed (see Section 6.1). All other
classes belong to the main package, including the Main class providing the main method,
the classes TurtleStatement and TurtleStore for output in Turtle syntax [49] (see Sec-
tion 6.2.4), the interface Importer together with its reference implementation YrNoImporter
(see Section 6.2.1), WeatherImporterProperties which encapsulates the properties file (see
Section 6.2), and WeatherImporterException, an exception class that is used throughout the
application.

All classes belonging to Weather Importer include comments suitable for use with the Javadoc
Tool [212].

6.1 The data model

The core of Weather Importer is formed by an object-oriented data model that can be found in the
model package. This package contains classes that are to be instantiated in order to encapsulate

97

98 CHAPTER 6. THE WEATHER IMPORTER

all data that is collected from weather sensors and services. After processing the data in a manner
that makes it suitable for use within the SmartHomeWeather ontology, individuals and statements
are generated and added to the ontology.

The domain model in the package model which resembles the structure of the SmartHome-
Weather ontology is depicted in the UML class diagram in Figure 6.1; to give an overview,
Figure 6.2 shows a simplified class diagram that shows only the most important classes Weather,
WeatherReport, WeatherState, and WeatherPhenomenon.

Other than its name suggests, OntologyClass is an interface that is implemented by every
class that corresponds to a concept (class) in the ontology. That interface defines a set of methods
which are necessary to export an object’s data either to individuals and statements for adding them
to the ontology using Apache Jena [213] or to a representation of the individuals and statements
in Turtle syntax (see Section 6.2 below). The methods defined by OntologyClass are:

• createIndividuals() creates individuals and statements holding the data that is stored
in the object and adds them to the ontology. The method calls createIndividuals() for
any objects that are connected to this object, with the exception of instances of Weather
State and WeatherReport that are linked together via the properties previousState
and previousReport, respectively.

• getIndividual() returns the Individual object previously created by the method
createIndividuals() that represents the main ontology individual described by the
object. In some classes, due to the structure of the SmartHomeWeather ontology and
the ontologies being imported, calling createIndividuals() will add more than one
individual to the ontology, e.g. an Instant creates an individual of type Instant and one
of type DateTimeDescription1. getIndividual() will return the Individual object
representing the Instant individual; the corresponding DateTimeDescription object can be
obtained by querying the ontology for the statement having the previously returned Instant
individual as subject and the property inDateTime as predicate.

• getTurtleStatements() returns an instance of TurtleStore that contains a set of
TurtleStatement objects each representing an RDF triple in Turtle syntax. The instance
being returned contains all data that calling createIndividuals() would add to the
ontology. See Section 6.2.4 for details.

• getTurtleName() returns the qualified name of the individual represented by the object
that is used in in the TurtleStatements returned by calling getTurtleStatements().
In case createIndividuals() creates more than one individual, the method only yields
the name of the individual returned by getIndividual().

• toString() returns a textual representation of the object (for debugging purposes).

The classes inside the package model are:

1DateTimeDescription is defined by OWL-Time as the concept that represents the timestamp of an Instant; the
property inDateTime links an instance of DateTimeDescription to an instance of Instant.

6.1. THE DATA MODEL 99

<<interface>>

OntologyClass

+createIndividuals(model:OntModel): void
+getIndividual(): Individual
+getTurtleStatements(): TurtleStore
+getTurtleName(): String
+toString(): String

GeographicalPosition
-altitude: float
-latitude: float
-longitude: float

TemporalEntity Instant
-date: Date

Interval
-time: float

WeatherPhenomenon

CloudCover
-altitude: int
-coverage: int

DewPoint
-dewPointValue: float

Humidity
-humidityValue: float

Precipitation
-intensity: float
-probability: float

Pressure
-pressureValue: float

SolarRadiation
-radiationValue: float

SunPosition
-azimuth: double
-elevation: double
-zenith: double

Wind
-windDirection: int
-windSpeed: float

Temperature
-temperatureValue: float

WeatherReport
-priority: int

WeatherState

WeatherSource

SensorSource ServiceSource

Weather
-priority: int

1..1

0..*

2..2 0..*

1..1

0..*

1..1

0..*

1..1 1..1

0..1
0..1

0..1

0..1

1..1

0..*

Figure 6.1: The domain model used in Weather importer. See Figure 6.2 for a simplified diagram
that shows only the most important classes.

100 CHAPTER 6. THE WEATHER IMPORTER

WeatherPhenomenon

WeatherReport
-priority: int

WeatherState

Weather
-priority: int

1..1

0..*

1..1 1..1

0..1
0..1

0..1

0..1

1..1

0..*

Figure 6.2: The most important classes of the domain model used in Weather importer. Refer to
Figure 6.1 for a diagram showing all classes.

• GeographicalPosition resembles the concept Point of the Basic Geo (WGS84 lat/long)
Vocabulary [74] that is imported into the SmartHomeWeather ontology.

• TemporalEntity corresponds to the concept Temporal entity in the OWL-Time [75]
ontology. The are two sub-classes, Instant and Interval that resemble the concepts
Instant and Interval, respectively.

• WeatherPhenomenon corresponds to the concept Weather phenomenon in the Smart-
HomeWeather ontology. As it is an abstract class, only its subclasses CloudCover, Dew-
Point, Humidity, Precipitation, Pressure, SolarRadiation, SunPosition,
Temperature, and Wind can be instantiated that each resemble the corresponding concept
of the ontology.

• WeatherReport corresponds to the concept Weather report.

• WeatherSource corresponds to the concept Weather source. It is an abstract class and
has two subclasses SensorSource and ServiceSource resembling the concepts Sensor
source and Service source, respectively.

• WeatherState corresponds to the concept Weather state.

• Weather has no counterpart in the ontology; it represents a collection of instances of
WeatherReport which are obtained from sensors and/or services at the same time.

Additionally, there is an enumeration named WeatherConditions having values that each
correspond to the individuals predefined by the ontology for the concept Weather condition.

6.2 The application

The Weather Importer application basically performs three tasks when being launched: It reads
the SmartHomeWeather ontology in RDF/XML syntax [47] from a file; it then adds, modifies,
or removes instances and properties describing weather data; eventually, the modified ontology

6.2. THE APPLICATION 101

is written into another file, either in RDF/XML syntax or in Turtle syntax [49]. There are four
operation modes that are covered below: fetch, timestamps, remove, and turtle.

The application depends on the Apache Jena framework [213] (successfully tested with
2.10.0). For the unit tests (see Section 6.3), JUnit [210] (4.11), the Pellet OWL 2 reasoner [61]
(2.3.0), and Cobertura [214] (1.9.4.1) are used. The version numbers given in parentheses give
the versions of the most recent releases of the libraries at the time of writing. Newer releases may
work, but have not been tested.

Weather Importer comes with a build script for Apache Ant [215] that provides target defini-
tions for compiling, running, and testing the application:

• The targets compile and compile_test compile the application and the JUnit test cases,
respectively. dist generates two JAR files [216], one containing the application and one
for the class that imports weather data from yr.no. clean removes all files and directories
generated by the aforementioned targets and the target javadoc; rebuild runs the targets
clean, compile, dist, and compile_test consecutively.

• The targets fetch, timestamps, remove, and turtle launch the application in the
respective modes.

• The target test runs the JUnit test cases; coverage generates a coverage report using
Cobertura, i.e. an overview about which parts of the application’s code are covered by the
test cases (see Section 6.3 for details).

• The target javadoc generates documentation from comments in the source code using the
Javadoc Tool [212].

Various parameters of Weather Importer are configurable using a properties file [217] which
provides the location for which weather data shall be fetched (given by latitude, longitude, and alti-
tude), the timestamps relative to the current time in hours for which instances of WeatherReport
shall be created, names of input and output files, and the name of the class that fetches weather
data. Additional options required by an implementation of the Importer interface may be added.

6.2.1 fetch mode

In fetch mode, Weather Importer reads the SmartHomeWeather ontology in RDF/XML syntax
from a file using the Apache Jena framework and fetches weather data for the desired location
from a weather service via Internet.

To provide the reference implementation that is found in the class YrNoImporter, Weather
Importer obtains weather data from yr.no as described in Section 3.4. Any other sources for
weather data, regardless whether that sources are weather sensors, Internet weather services or
any combination of a set of these, can be utilised by creating a class that implements the interface
Importer. This interface defines a single method named fetchWeather() that returns a
Weather object containing all weather data obtained from sensors and/or services.

By calling the method createIndividuals() of that Weather object, the weather data
is added to Apache Jena’s in-memory representation of the ontology. Eventually, the modified
ontology is written back to a file in RDF/XML syntax.

102 CHAPTER 6. THE WEATHER IMPORTER

As most weather services do not provide data for arbitrary points in time, the Weather class
provides the method normalizeWeatherReports(). It transforms the data encapsulated by
the Weather object in the following ways:

• Each associated WeatherReport object that covers a period of more than one hour is
replaced by several WeatherReport objects, one for each hour. All associated instances
of WeatherReport and WeatherPhenomenon are cloned appropriately.

• If there is more than one WeatherReport object covering the same period of time, all
data from these objects are merged into one object; the remaining objects will be discarded.

• In case there is no data for a period of time, it is calculated using linear interpolation from
data before and after the missing period [218].

• An instance of SunPosition is associated to each instance of WeatherState. The sun
position data is calculated using the PSA algorithm [161] (refer to Section 3.5 for details);
the C++ reference implementation of the PSA algorithm [219] was ported to Java.

Additionally, the class WeatherState provides the method mergePhenomena() which
merges all instances of WeatherPhenomenon of the same type that are associated to that instance
of WeatherState. Actual merging of values takes place in the constructors of the subclasses of
WeatherPhenomenon; all current implementations merge values by calculating the arithmetic
mean of all values provided [218].

Both methods provide the developer of an implementation of the interface Importer with
more flexibility on how to import weather data: There is no need to create a separate instance
of WeatherReport for every possible period of time; each WeatherReport object may cover
more than one hour and more than one instance of each subclass of WeatherPhenomenon may
be associated to each instance of WeatherState. The latter eases merging values from several
sources (e.g. an Internet weather service and a set of weather sensors).

6.2.2 timestamps mode

There are two ways to update weather data in the SmartHomeWeather ontology:

• The data can be reobtained using the fetch mode into a copy of the ontology that does
not contain any weather data. If it does contain any weather data, it can be removed using
the remove mode (see below).

• Alternatively, the timestamps (Start time, End time, and Observation time) of all instances of
the concept Weather report can be modified in order to make them correspond to the current
time; for instance, when running timestamps mode two hours after the initial fetch run,
for each instance of Weather report its Start time and its End time are decremented by two
hours while its Observation time is advanced by two hours.

The latter option is implemented in Weather Importer as the timestamps mode. That mode
is based on the timestamps of each Weather report individual being specified by the difference to
the current time in hours.

6.2. THE APPLICATION 103

weather:interval0.0 time:hasDurationDescription weather:hour0.0 .
weather:interval1.0 time:hasDurationDescription weather:hour1.0 .
weather:interval2.0 time:hasDurationDescription weather:hour2.0 .
weather:interval3.0 time:hasDurationDescription weather:hour3.0 .
weather:interval4.0 time:hasDurationDescription weather:hour3.0 .

weather:weatherReport2 weather:hasStartTime weather:interval2.0 .
weather:weatherReport2 weather:hasEndTime weather:interval3.0 .

weather:weatherReport3 weather:hasStartTime weather:interval3.0 .
weather:weatherReport3 weather:hasEndTime weather:interval4.0 .

weather:weatherReport2 weather:hasObservationTime weather:instant0 .
weather:weatherReport3 weather:hasObservationTime weather:instant0 .

weather:instant0 time:inDateTime weather:dateTime0 .

weather:dateTime0 a time:DateTimeDescription .
weather:dateTime0 time:unitType time:unitMinute .
weather:dateTime0 time:minute 44 .
weather:dateTime0 time:hour 12 .
weather:dateTime0 time:day "---02"^^xsd:gDay .
weather:dateTime0 time:month "--03"^^xsd:gMonth .
weather:dateTime0 time:year "2013"^^xsd:gYear .

Listing 6.1: Example statements generated by Weather Importer running in fetch mode.

In timestamps mode, for each instance of Weather report stored in the ontology its Observa-
tion time is retrieved and the difference to the current time in hours is calculated. This difference
is then subtracted from both the individual’s Start time and End time; the difference is added to
the individual’s Observation time. Listing 6.1 shows a part of the statements generated by running
Weather Importer in fetch mode; Listing 6.2 shows the statements that have been modified by
Weather Importer running in timestamps mode two hours later; the altered statements include

• the properties weather:hasStartTime and weather:hasEndTime of the individuals
weather:weatherReport2 and weather:weatherReport3 and

• the properties time:hour and time:minute of weather:dateTime0.

After Weather Importer has finished, the OWL reasoner must be run using the new data in
order to update all knowledge that is produced by the reasoner. For instance, in the example
shown in Listing 6.1 and Listing 6.2, an instance of Weather report that was previously inferred
to be an instance of the concept Forecast 2 hours weather report becomes an instance of Current
weather report, an instance of Forecast 3 hours weather report becomes an instance of Forecast 1
hours weather report and so on.

104 CHAPTER 6. THE WEATHER IMPORTER

weather:interval0.0 time:hasDurationDescription weather:hour0.0 .
weather:interval1.0 time:hasDurationDescription weather:hour1.0 .
weather:interval2.0 time:hasDurationDescription weather:hour2.0 .
weather:interval3.0 time:hasDurationDescription weather:hour3.0 .
weather:interval4.0 time:hasDurationDescription weather:hour3.0 .

weather:weatherReport2 weather:hasStartTime weather:interval0.0 .
weather:weatherReport2 weather:hasEndTime weather:interval1.0 .

weather:weatherReport3 weather:hasStartTime weather:interval1.0 .
weather:weatherReport3 weather:hasEndTime weather:interval2.0 .

weather:weatherReport2 weather:hasObservationTime weather:instant0 .
weather:weatherReport3 weather:hasObservationTime weather:instant0 .

weather:instant0 time:inDateTime weather:dateTime0 .

weather:dateTime0 a time:DateTimeDescription .
weather:dateTime0 time:unitType time:unitMinute .
weather:dateTime0 time:minute 58 .
weather:dateTime0 time:hour 14 .
weather:dateTime0 time:day "---02"^^xsd:gDay .
weather:dateTime0 time:month "--03"^^xsd:gMonth .
weather:dateTime0 time:year "2013"^^xsd:gYear .

Listing 6.2: Example statements modified by Weather Importer running in timestamps mode
about two hours after the running it in fetch mode. See Listing 6.1 for the statements generated
in the initial run.

6.2.3 remove mode

In remove mode, the Weather Importer takes an ontology in RDF/XML syntax from a file using
Apache Jena. All weather data is removed and the resulting ontology is written back to a file in
RDF/XML syntax. This file can then be used as input to Weather Importer’s fetch mode.

6.2.4 turtle mode

The turtle mode is a mode that was created for debugging reasons; in that mode Weather
Importer performs the same steps as in fetch mode, with the following differences:

• The SmartHomeWeather ontology is not read from a file. Hence, the output consists only
of the statements generated from the weather data that is imported.

• The Apache Jena framework is not used. This enables a developer to distinguish between
an error in the usage of Apache Jena or an error somewhere else.

• For better readability, Turtle syntax is used for output instead of RDF/XML.

6.3. UNIT TESTS 105

TurtleStatement
-subject: String
-predicate: String
-object: String

TurtleStore

+add(statement:TurtleStatement): void
+addAll(store:TurtleStore): void
+printAll(): String

0..*1..1

Figure 6.3: Classes used for output in Turtle syntax.

The turtle mode is not necessary for productive use of Weather Importer. However, it is
kept for providing a demonstrative description of Weather Importer’s output and for easing future
debugging, if necessary.

Figure 6.3 shows the two classes TurtleStatement and TurtleStore that provide a data
structure for output in Turtle syntax. TurtleStatement represents a single RDF statement in
turtle syntax; TurtleStore encapsulates a set of TurtleStatement objects and provides a
method for writing all statements to a file.

Section A.2 in the appendix shows a part of the output generated by Weather Importer in
turtle mode.

6.3 Unit tests

Weather Importer incorporates a set of JUnit [210] tests that cover reasoning in the SmartHome-
Weather ontology and the application itself. For testing correct reasoning, the Apache Jena
framework and the Pellet reasoner are used. Additionally, Cobertura [214] extends the JUnit
framework by the generation of a coverage report that lists in detail how often the lines in all Java
class files are executed during the unit tests. Using Cobertura, it is possible to determine if every
line of code that is intended to be tested is actually tested. According to the analysis generated by
Cobertura, the coverage is 100 % for all classes that are target of unit tests.

The following test categories are implemented:

• Category 1: Tests for OWL reasoning concerning single individuals of the ontology; e.g.
an instance of Weather phenomenon that has a has temperature value property must be
reasoned to be an instance of Temperature.

• Category 2: Tests that involve reasoning for instances of several concepts; e.g. correct
reasoning of Calm weather.

• Category 3: Tests for the import of weather data from yr.no.

• Category 4: Tests for the output in Turtle syntax.

The class Main in the package main remains not being covered by JUnit tests; its purpose is
to only read command input and to instantiate the appropriate classes which are covered by JUnit
anyway.

All test cases of category 1 and category 2 share the same approach:

106 CHAPTER 6. THE WEATHER IMPORTER

1. Using Apache Jena, the SmartHomeWeather ontology is read from its RDF/XML represen-
tation from disk and an in-memory representation is created.

2. One or more test individuals together with their properties are added to the in-memory
ontology. For example, when testing the correct functionality of the sub-concept Room
temperature of Temperature, an instance of Weather phenomenon is generated together
with a property of type has temperature value that assigns the value of 20 ◦C to the Weather
phenomenon using the MUO ontology.

3. The Pellet reasoner is invoked to obtain all statements that can be inferred from the currently
available knowledge base.

4. The set of all statements that includes the previously generated instance(s) is compared
to a predefined set of expected statements. For the test case to be successful, the two sets
must match.

In the above example of testing Room temperature, the created instance of Weather
phenomenon must be inferred to be an instance of Weather phenomenon, Temperature, and
Room temperature. Additionally, it must not be an instance of Frost, Cold, Below room
temperature, Above room temperature, or Heat.

5. The in-memory representation of SmartHomeWeather is destroyed.

6. The steps 1 to 5 are repeated to perform another test. When testing Room temperature,
another temperature value could be chosen or another sub-concept of Temperature could
be selected. Temperature is tested with values in the range from −100 ◦C to 100 ◦C, with
a resolution of 0.1 ◦C between 0 ◦C and 30 ◦C and 0.5 ◦C otherwise. As soon as all these
values have been tested, another sub-concept of Weather phenomenon becomes the subject
of the unit tests.

During a full test run, the above steps are executed 4620 times for category 1 test cases and
2250 times for category 2 test cases.

A test of category 3 is implemented using a pre-defined snippet containing an XML document
as it is returned by the API of yr.no. This snippet is fed into the Weather Importer to generate an
object-oriented data model. Then it is verified whether this data model contains exactly the data
from the snippet. Some of the snippets are invalid, i.e. the XML document does not adhere to the
XML Schema definition of yr.no’s API [158]. In that case, the Weather Importer is expected to
fail with an appropriate error message. The total number of different snippets used for category 3
JUnit test cases is 31.

During a test of category 4, an object-oriented weather data model is generated which is then
exported to Turtle syntax. This output is then compared to the expected output. There are 12 such
test cases.

CHAPTER 7
Conclusion

7.1 Summary

This thesis describes a weather data model based on an OWL ontology, a Java application for
importing data into that model, and all prerequisites leading to these two outcomes.

After Chapter 1 gives an introduction into the motivation behind the thesis and describes the
problem statement, the intended goal, and the methodological approach, Chapter 2 discusses the
foundations the thesis builds upon: Ontologies, ontology related technologies like RDF, RDFS,
or OWL, ThinkHome, already existing ontologies for weather data, and ontologies that cover
information related to the domain covered by SmartHomeWeather. Chapter 3 then focuses on
weather data that is available from both locally installed weather sensors as well as from weather
services accessible via Internet. This chapter then identifies a set of weather phenomena which
SmartHomeWeather shall cover and determines further details about the domain of weather data as
used in the present context. Of the weather services being discussed, yr.no is selected for providing
a reference implementation for the import of weather data into SmartHomeWeather in a later step.
Chapter 4 sheds light on five different approaches towards the development of new ontologies
from scratch. The approaches are compared to each other and one of them, METHONTOLOGY ,
is identified as the one that fits the requirements for designing SmartHomeWeather best.

Eventually, Chapter 5 applies METHONTOLOGY to SmartHomeWeather and describes every
step in a detailed manner. As the data model itself does not contain any weather data, in Chapter 6
Weather Importer, a Java application, is developed which accesses yr.no to retrieve weather data
for a certain location, transforms the data being obtained, and adds them to the data model of
SmartHomeWeather. Furthermore, Weather Importer includes a comprehensive set of JUnit test
cases which ensure that SmartHomeWeather and Weather Importer work as expected.

As the overall goal of this thesis, SmartHomeWeather represents a comprehensive ontological
model for current and future weather data which is limited to aspects that are reasonable for the
use in the context of smart homes. It is centered around a set of five top-level concepts, Weather
condition, Weather phenomenon, Weather report, Weather source, and Weather state. Instances

107

108 CHAPTER 7. CONCLUSION

of these elements represent the current weather situation together with a forecast for the upcoming
24 hours. Depending on their respective values, instances representing weather elements (i.e.
instances of Weather phenomenon) are grouped into categories such as Room temperature or
Heavy rain, allowing simple and straight-forward identification of certain weather properties.
Furthermore, some combinations of instances of Weather phenomenon are combined into a set of
instances of Weather state to help allow simple identification of certain weather situations, e.g.
Fair weather or Severe weather.

SmartHomeWeather is built with simple and efficient OWL reasoning in mind; together with
SWRL rules and SPARQL queries, the reasoning within SmartHomeWeather can provide answers
to a predefined set of competency questions that cover various weather-related aspects in and
around a dwelling. Additionally, due to the extent of weather data being covered, SmartHome-
Weather may be able to answer other questions that have not yet been considered.

Besides the work on SmartHomeWeather itself, this thesis carries out extensive research
regarding methodologies for developing ontologies. Five different approaches towards creating
new ontologies from scratch are outlined, their characteristics are identified, and their suitability
for applying them to the domain of SmartHomeWeather is evaluated. While METHONTOLOGY
turns out to be best-fitting approach in the context of SmartHomeWeather, the other methodologies
are also well-known approaches which would probably lead to results of similar quality as
METHONTOLOGY does.

Nine different Internet weather services are evaluated regarding the ability to provide viable
data to a smart home. During this evaluation, many problems regarding weather services are
enumerated which make their use difficult. Using the example of the KNX fieldbus, available
weather sensors are enumerated. Taking the knowledge about weather services and sensors into
account, a set of weather elements is compiled; knowledge about the state of any of these weather
elements helps controlling smart homes. While most of these weather elements (atmospheric
pressure, cloud coverage, dew point, precipitation, relative humidity, solar radiation, temperature,
and wind) can be taken from weather services or sensors, the dew point value can also be derived
from values of other elements; the position of the sun is determined algorithmically from time
and location.

SmartHomeWeather tries to reuse existing ontologies wherever possible. However, many
ontologies have been found that are incomplete, unsuitable, or lack documentation; many projects
appear to have been put on ice. Hence, the set of ontologies used by SmartHomeWeather melts
down to OWL-Time (for temporal specifications), the Basic Geo (WGS84 lat/long) Vocabulary
(for geographic locations), and MUO (for units of measurement).

Weather Importer is an application developed in Java which is designed to import weather
data into SmartHomeWeather from one of the Internet weather services that have been discussed;
furthermore, this application can update the imported data as time moves on. Besides its core
functionality, Weather Importer provides means for debugging the functionality of both itself
and SmartHomeWeather as well as a comprehensive set of unit tests which ensure correct
implementation of the ontology and the Java application.

7.2. OUTLOOK 109

7.2 Outlook

Regarding SmartHomeWeather, there are two areas where future work can be done. These are
the elimination of its current shortcomings and the search for further use cases for the data it
provides.

7.2.1 Shortcomings in the current version

The current version of SmartHomeWeather comes with a few shortcomings that require future
work in order to resolve them. Not all of these problems lie in the scope of SmartHomeWeather.
The main problems arising are:

• There are a few situations that expose bugs in Protégé and the Pellet reasoner. While it is
possible to develop ontologies using these technologies which cover a certain domain, it is
hardly avoidable to run into bugs that manifest themselves in the form of incomprehensible
error messages. In that case, the ontology needs to be modified slightly to work around
these bugs. Unfortunately, during the development of SmartHomeWeather, it has not been
possible to track these bugs down in order to find their reason and to fix them. Future work
that resolves these bugs may ease the work with Protégé, Pellet, and SmartHomeWeather.

• At the time of writing, OWL-Time [75] (see Section 2.4.2) has not reached the state of
being a W3C recommendation [52]; since it was first published more than six years ago, it
has remained to be a working draft. Although it can be assumed that the core concepts and
relations defined by OWL-Time will not change regarding their syntax and semantics, it is
still work in progress and therefore may change or vanish without prior notice.

• Similar problems arise from the use of the Basic Geo (WGS84 lat/long) Vocabulary [74].
This technology has not even been submitted to the W3C recommendation track for
standardisation. Furthermore, no work on the WGS84 vocabulary itself has been done
since 2006. Further work by the W3C Geospatial Incubator Group did not lead to any
standards (see Section 2.4.1).

Furthermore, SmartHomeWeather suffers from performance issues regarding the time required
for reasoning. In test runs that were conducted after development, complete reasoning in Protégé
using the Pellet reasoner of the “empty” ontology (not containing any individuals denoting
weather data) took between 15 and 30 seconds and between 45 and 60 seconds for the ontology
that contains weather data imported using the Weather Importer from Chapter 6 (on the PC used
for development which is equipped with a Intel Q6600 CPU [220] running Ubuntu Linux [221]).

One reason for these performance issues is the use of the MUO ontology which increases
the reasoning time by about 30% (see Section 5.6.1). Abandonment of this ontology would
speed up the reasoning process, though this would introduce problems regarding literal values
without a unit. There are other ontologies which may be used instead of the MUO ontology (see
Section 2.4.3), such as the OM ontology. However, as the OM ontology adds about the same level
of complexity to the ontology, it is certain that it increases the reasoning time of the smart home’s

110 CHAPTER 7. CONCLUSION

knowledge base to the same extent as MUO. It is questionable whether there is a unit ontology
that allows faster reasoning than MUO.

Further performance optimisations may be possible by modifying the internal structure of
SmartHomeWeather without changing name and semantics of externally accessed concepts. For
instance, concepts such as Weather report, Weather state, and Weather phenomenon together
with their respective sub-concepts remain part of the ontology while the definitions of these
concepts are modified to allow faster reasoning. However, at the present time it is unknown to
what degree performance gains are possible using this approach.

Nevertheless, its current state, SmartHomeWeather represents an ontology that fully complies
with its specification of covering current and future weather data as far as possible. SmartHome-
Weather may even provide answers to many questions that have not been considered during its
development. Eventually, the employment of SmartHomeWeather in environments other than
smart homes is also imaginable, wherever current and future weather data are to be used.

7.2.2 Further uses of data provided by SmartHomeWeather

SmartHomeWeather also provides a context for future work to further improve the control of
smart homes. One possible starting point is the identification of further aspects in smart homes
that are related to the weather, particularly in conjunction with other sources of data. These
aspects may be covered by another set of questions similar to the competency questions presented
in Section 3.1; some possible examples are:

• Assuming that the price for electrical energy varies over time (smart metres capturing the
power consumption of a building in intervals of a few seconds, minutes, or hours gain
increasing popularity1), how can energy consumption and costs be minimised through most
efficiently using the power provided by solar panels?

• How can knowledge about the times of presence and absence of the building’s inhabitants
together with a weather forecast over 24 hours lead to more efficient HVAC control?

• Can the building learn from the influences of weather on the building (e.g. sunshine heating
up a room) to more efficiently control processes in the future (e.g. turn off the heating in a
room in advance in case the sun may heat it up soon)?

• How can Smart Cities2 benefit from smart homes utilising SmartHomeWeather and vice
versa?

Due to the extent of weather data covered by SmartHomeWeather, the ontology may be able
to provide data for many or even all future use cases. Whatever future research may result in –
smart homes and especially weather-related control will remain an interesting topic for many
years.

1In Austria, 95 percent of all households are expected to be equipped with smart metres by 2019 [222].
2The term Smart City describes efforts of cities around the globe to utilise information and communication

technologies in order to make communities more efficient, more liveable and more sustainable [223, 224].

APPENDIX A
Tables and listings

This appendix contains tables and listings that are referenced from other chapters.

A.1 Conceptualisation tables for SmartHomeWeather

In order to keep the documentation of SmartHomeWeather clear, a set of tables is omitted from
Section 5.4. This section contains these tables in case they are needed for reference.

The tables in this section are:

• Concept dictionaries for Weather condition, Weather state, and Weather source (Table A.1),
and for Weather phenomenon and Weather report (Table A.2); see Section 5.4.4 for details
about concept dictionaries.

• The Binary relations table in Table A.3; see Section 5.4.5 for details.

• The Instance attributes table in Table A.4; see Section 5.4.6 for details.

• The Class attributes table in Table A.5, Table A.6, Table A.7, and Table A.8; see Sec-
tion 5.4.7 for details.

• The Instances table in Table A.9; see Section 5.4.8 for details.

111

112 APPENDIX A. TABLES AND LISTINGS

Name Instances Relations
Weather condition cloud, fog, partly

cloudy, mostly
cloudy, rain, sleet,
snow, sun, thunder

has condition

Weather state has condition,
belongs to weather report,
has weather state,
belongs to state,
has weather phenomenon

Weather source is source of, has source
Sensor source is source of, has source
Service source is source of, has source

Table A.1: Concept dictionary for Weather condition, Weather state, and Weather source.

A.1. CONCEPTUALISATION TABLES FOR SMARTHOMEWEATHER 113

Name Instance attributes Relations
Atmospheric pressure has pressure value belongs to state,

has weather phenomenon
Dew point has dew point value belongs to state,

has weather phenomenon
Humidity has humidity value belongs to state,

has weather phenomenon
Precipitation has precipitation intensity,

has precipitation probability
belongs to state,
has weather phenomenon

Sun position has sun elevation angle,
has sun direction

belongs to state,
has weather phenomenon

Solar radiation has solar radiation value belongs to state,
has weather phenomenon

Temperature has temperature value belongs to state,
has weather phenomenon

Weather phenomenon - belongs to state,
has weather phenomenon

Wind has wind speed,
has wind direction

belongs to state,
has weather phenomenon

Weather report has priority has source, is source of,
has weather state,
belongs to weather report
location,
has start time, has end time,
has observation time

Weather report has priority has source, is source of,
has weather state,
belongs to weather report
location,
has start time, has end time,
has observation time

Table A.2: Concept dictionary for Weather phenomenon and Weather report.

114 APPENDIX A. TABLES AND LISTINGS

Name Source
concept

Target
concept

Maximum
source
cardinality

Inverse
relation

belongs to state Weather phe-
nomenon

Weather state 1 has weather
phenomenon

belongs to
weather report

Weather state Weather report 1 has weather
state

has condition Weather state Weather condi-
tion

N -

has end time Weather report Interval 1 -
has observation
time

Weather report Instant 1 -

has next
weather state

Weather report Weather report 1 has previous
weather state

has previous
weather state

Weather report Weather report 1 has next
weather state

has source Weather report Weather source 1 is source of
has start time Weather report Interval 1 -
has weather
phenomenon

Weather state Weather phe-
nomenon

N belongs to state

has weather
state

Weather report Weather state 1 belongs to
weather report

is source of Weather source Weather report N has source
location Weather report Point 1 -

Table A.3: Binary relations table.

A.1. CONCEPTUALISATION TABLES FOR SMARTHOMEWEATHER 115

Attribute
name

Concept
name

Value type Value
range

Unit Cardinality
(min, max)

alt Location xsd:decimal any values
allowed

m (1, 1)

has cloud alti-
tude

Cloud cover xsd:decimal any values
allowed

m (1, 1)

has cloud cover Cloud cover xsd:integer [0, 9] okta (1, 1)

has dew point
value

Dew point xsd:decimal any values
allowed

◦C (1, 1)

has humidity
value

Humidity xsd:decimal [0, 1] - (1, 1)

has precipita-
tion intensity

Precipitation xsd:decimal [0,∞) mm/h (1, 1)

has precipita-
tion probability

Precipitation xsd:decimal [0, 1] - (1, 1)

has pressure
value

Atmospheric
pressure

xsd:decimal [0,∞) hPa (1, 1)

has solar radia-
tion value

Solar radia-
tion

time:decimal [0,∞) W/m2 (1, 1)

has sun direc-
tion

Sun position xsd:decimal [0, 360) ◦ (degrees) (1, 1)

has sun eleva-
tion angle

Sun position xsd:decimal [−90, 90] ◦ (degrees) (1, 1)

has temperature
value

Temperature xsd:decimal any values
allowed

◦C (1, 1)

has wind direc-
tion

Wind xsd:decimal [0, 360) ◦ (degrees) (1, 1)

has wind speed Wind xsd:decimal [0,∞) m/s (1, 1)

lat Location xsd:decimal [−90, 90] ◦ (degrees) (1, 1)

long Location xsd:decimal [−180, 180] ◦ (degrees) (1, 1)

Table A.4: Instance attributes table.

116 APPENDIX A. TABLES AND LISTINGS

Super-
concept

Sub-concept Attribute name Attribute
value(s)

Atmospheric
pressure

Very low pressure has pressure value < 998

Atmospheric
pressure

Low pressure has pressure value [998, 1008)

Atmospheric
pressure

Average pressure has pressure value [1008, 1018)

Atmospheric
pressure

High pressure has pressure value [1018, 1028)

Atmospheric
pressure

Very high pressure has pressure value ≥ 1028

Cloud cover Clear sky has cloud cover 0

Cloud cover Partly cloudy has cloud cover 1, 2, 3, 4
Cloud cover Mostly cloudy has cloud cover 5, 6, 7
Cloud cover Overcast has cloud cover 8

Cloud cover Unknown cloud cover has cloud cover 9

Humidity Very dry has humidity value < 0.3

Humidity Dry has humidity value [0.3, 0.4)

Humidity Average humidity has humidity value [0.4, 0.7]

Humidity Moist has humidity value (0.7, 0.8]

Humidity Very moist has humidity value > 0.8

Precipitation No rain has precipitation intensity
has precipitation probability

0
0

Precipitation Light rain has precipitation intensity
has precipitation probability

(0, 5]
(0, 1]

Precipitation Medium rain has precipitation intensity
has precipitation probability

(5, 20]
(0, 1]

Precipitation Heavy rain has precipitation intensity
has precipitation probability

(20, 50]
(0, 1]

Table A.5: Class attributes table (1).

A.1. CONCEPTUALISATION TABLES FOR SMARTHOMEWEATHER 117

Super-concept Sub-concept Attribute name Attribute value(s)
Precipitation Extremely heavy

rain
has precipitation intensity
has precipitation probability

(50, 100]
(0, 1]

Precipitation Tropical storm
rain

has precipitation intensity
has precipitation probability

> 100
(0, 1]

Solar radiation No radiation has solar radiation value 0

Solar radiation Low radiation has solar radiation value (0, 250)

Solar radiation Medium radiation has solar radiation value [250, 500)

Solar radiation High radiation has solar radiation value [500, 750)

Solar radiation Very high radia-
tion

has solar radiation value ≥ 750

Sun position Sun from north has sun direction [0, 45] ∪ (315, 360)

Sun position Sun from east has sun direction (45, 135]

Sun position Sun from south has sun direction (135, 225]

Sun position Sun from west has sun direction (225, 315]

Sun position Day has sun elevation angle [0, 90]

Sun position Solar twilight has sun elevation angle [0, 6)

Sun position Sun below horizon has sun elevation angle [−90, 0)
Sun position Twilight has sun elevation angle [−18, 0)
Sun position Civil twilight has sun elevation angle [−6, 0)
Sun position Nautical twilight has sun elevation angle [−12,−6)
Sun position Astronomical twi-

light
has sun elevation angle [−18,−12)

Sun position Night has sun elevation angle [−90,−18)

Table A.6: Class attributes table (2).

118 APPENDIX A. TABLES AND LISTINGS

Super-concept Sub-concept Attribute name Attribute value(s)
Temperature Frost has temperature value < 0

Temperature Cold has temperature value [0, 10)

Temperature Below room tempera-
ture

has temperature value [10, 20)

Temperature Room temperature has temperature value [20, 25]

Temperature Above room tempera-
ture

has temperature value (25, 30]

Temperature Heat has temperature value > 30

Wind Directional wind has wind direction [0, 360)

Wind North wind has wind direction [0, 45) ∪ [315, 360)

Wind East wind has wind direction [45, 135)

Wind South wind has wind direction [135, 225)

Wind West wind has wind direction [225, 315)

Wind Calm has wind speed [0, 1)

Wind Light wind has wind speed [1, 10)

Wind Strong wind has wind speed [10, 20)

Wind Storm has wind speed ≥ 20

Wind Hurricane has wind speed ≥ 32

Weather report Short range weather re-
port

has start time (0, 3]

Weather report Medium range weather
report

has start time (3, 12)

Weather report Long range weather re-
port

has start time ≥ 12

Weather report Current weather report has start time 0

Weather report Forecast weather report has start time > 0

Weather report Forecast 1 hour weather
report

has start time 1

Weather report Forecast 2 hours
weather report

has start time 2

Weather report Forecast 3 hours
weather report

has start time 3

Table A.7: Class attributes table (3).

A.1. CONCEPTUALISATION TABLES FOR SMARTHOMEWEATHER 119

Super-concept Sub-concept Attribute name Attribute
value(s)

Weather report Forecast 6 hours weather re-
port

has start time 6

Weather report Forecast 9 hours weather re-
port

has start time 9

Weather report Forecast 12 hours weather
report

has start time 12

Weather report Forecast 15 hours weather
report

has start time 15

Weather report Forecast 18 hours weather
report

has start time 18

Weather report Forecast 21 hours weather
report

has start time 21

Weather report Forecast 24 hours weather
report

has start time 24

Weather report Weather report from sensor has source any instance of
Sensor source

Weather report Weather report from service has source any instance of
Service source

Current weather re-
port

Current weather report from
sensor

has source any instance of
Sensor source

Current weather re-
port

Current weather report from
service

has source any instance of
Service source

Table A.8: Class attributes table (4).

Instance name Concept name
Cloud Weather condition
Fog Weather condition
Partly cloudy Weather condition
Mostly cloudy Weather condition
Rain Weather condition
Sleet Weather condition
Snow Weather condition
Sun Weather condition
Thunder Weather condition

Table A.9: Instances table.

120 APPENDIX A. TABLES AND LISTINGS

A.2 Output of Weather Importer in Turtle syntax

This is a part of the output generated by Weather Importer run in turtle mode on April 4,
2013 at 14:56. Only statements about the first two individuals of type Weather report and the
individuals that are connected to them via object properties (excluding has next weather state)
are included. See Section 6.2.4 for details.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix weather: <http://www.semanticweb.org/ontologies/2011/9/ThinkHomeWeather.owl#> .
@prefix time: <http://www.w3.org/2006/time#> .
@prefix wgs: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix muo: <http://purl.oclc.org/NET/muo/muo#> .

weather:weatherReport0 a weather:WeatherReport ;
weather:hasPriority 421 .

weather:yr_no a weather:ServiceSource .

weather:weatherReport0 weather:hasSource weather:yr_no .

weather:interval0.0 a time:Interval .

weather:hour0.0 a weather:Hour ;
time:hours "0"^^xsd:decimal .

weather:interval0.0 time:hasDurationDescription weather:hour0.0 .

weather:interval1.0 a time:Interval .

weather:hour1.0 a weather:Hour ;
time:hours "1"^^xsd:decimal .

weather:interval1.0 time:hasDurationDescription weather:hour1.0 .

weather:weatherReport0 weather:hasStartTime weather:interval0.0 ;
weather:hasEndTime weather:interval1.0 .

weather:point0 a wgs:Point ;
wgs:lat "48.21"^^xsd:float ;
wgs:lon "16.37"^^xsd:float ;
wgs:alt "171.0"^^xsd:float .

weather:weatherReport0 wgs:location weather:point0 .

weather:instant0 a time:Instant .

weather:dateTime0 a time:DateTimeDescription ;
time:unitType time:unitMinute ;
time:minute 56 ;
time:hour 14 ;
time:day "---04"^^xsd:gDay ;
time:month "--04"^^xsd:gMonth ;
time:year "2013"^^xsd:gYear .

A.2. OUTPUT OF WEATHER IMPORTER IN TURTLE SYNTAX 121

weather:instant0 time:inDateTime weather:dateTime0 .

weather:weatherReport0 weather:hasObservationTime weather:instant0 .

weather:weatherState0 a weather:WeatherState .

_:blank1 muo:numericalValue "0.0"^^xsd:float ;
muo:measuredIn weather:percent .

_:blank2 muo:numericalValue "0.0"^^xsd:float ;
muo:measuredIn muo:millimetresPerHour .

weather:precipitation0.0 a weather:WeatherPhenomenon ;
weather:hasPrecipitationProbability _:blank1 ;
weather:hasPrecipitationIntensity _:blank2 ;
weather:belongsToWeatherState weather:weatherState0 .

_:blank3 muo:numericalValue 0 ;
muo:measuredIn weather:okta .

_:blank4 muo:numericalValue 5000 ;
muo:measuredIn muo:meter .

weather:cloudCover0.0 a weather:WeatherPhenomenon ;
weather:hasCloudCover _:blank3 ;
weather:hasCloudAltitude _:blank4 ;
weather:belongsToWeatherState weather:weatherState0 .

_:blank5 muo:numericalValue "7.6"^^xsd:float ;
muo:measuredIn muo:degrees-Celsius .

weather:temperature0 a weather:WeatherPhenomenon ;
weather:hasTemperatureValue _:blank5 ;
weather:belongsToWeatherState weather:weatherState0 .

_:blank6 muo:numericalValue "0.58"^^xsd:float ;
muo:measuredIn weather:percent .

weather:humidity0 a weather:WeatherPhenomenon ;
weather:hasHumidityValue _:blank6 ;
weather:belongsToWeatherState weather:weatherState0 .

_:blank7 muo:numericalValue "-0.8"^^xsd:float ;
muo:measuredIn muo:degrees-Celsius .

weather:dewPoint0 a weather:WeatherPhenomenon ;
weather:hasDewPointValue _:blank7 ;
weather:belongsToWeatherState weather:weatherState0 .

_:blank8 muo:numericalValue "1010.0"^^xsd:float ;
muo:measuredIn weather:hectopascal .

weather:pressure0 a weather:WeatherPhenomenon ;
weather:hasPressureValue _:blank8 ;
weather:belongsToWeatherState weather:weatherState0 .

_:blank9 muo:numericalValue "1.5"^^xsd:float ;
muo:measuredIn weather:metresPerSecond .

_:blank10 muo:numericalValue 47 ;
muo:measuredIn muo:degree .

weather:wind0 a weather:WeatherPhenomenon ;
weather:hasWindSpeed _:blank9 ;
weather:hasWindDirection _:blank10 ;
weather:belongsToWeatherState weather:weatherState0 .

122 APPENDIX A. TABLES AND LISTINGS

_:blank11 muo:numericalValue 220 ;
muo:measuredIn muo:degree .

_:blank12 muo:numericalValue "40.76"^^xsd:float ;
muo:measuredIn muo:degree .

weather:sunPosition0.0 a weather:WeatherPhenomenon ;
weather:hasSunDirection _:blank11 ;
weather:hasSunElevationAngle _:blank12 ;
weather:belongsToWeatherState weather:weatherState0 .

weather:weatherState0 weather:hasCondition weather:PartlyCloud .

weather:weatherReport0 weather:hasWeatherState weather:weatherReport0 .

weather:weatherReport1 a weather:WeatherReport ;
weather:hasPriority 421 ;
weather:hasSource weather:yr_no .

weather:interval2.0 a time:Interval .

weather:hour2.0 a weather:Hour ;
time:hours "2"^^xsd:decimal .

weather:interval2.0 time:hasDurationDescription weather:hour2.0 .

weather:weatherReport1 weather:hasStartTime weather:interval1.0 ;
weather:hasEndTime weather:interval2.0 ;
wgs:location weather:point0 ;
weather:hasObservationTime weather:instant0 .

weather:weatherState1 a weather:WeatherState .

_:blank13 muo:numericalValue "0.0"^^xsd:float ;
muo:measuredIn weather:percent .

_:blank14 muo:numericalValue "0.0"^^xsd:float ;
muo:measuredIn muo:millimetresPerHour .

weather:precipitation1.0 a weather:WeatherPhenomenon ;
weather:hasPrecipitationProbability _:blank13 ;
weather:hasPrecipitationIntensity _:blank14 ;
weather:belongsToWeatherState weather:weatherState1 .

_:blank15 muo:numericalValue 0 ;
muo:measuredIn weather:okta .

_:blank16 muo:numericalValue 5000 ;
muo:measuredIn muo:meter .

weather:cloudCover1.0 a weather:WeatherPhenomenon ;
weather:hasCloudCover _:blank15 ;
weather:hasCloudAltitude _:blank16 ;
weather:belongsToWeatherState weather:weatherState1 .

_:blank17 muo:numericalValue "7.6"^^xsd:float ;
muo:measuredIn muo:degrees-Celsius .

weather:temperature1 a weather:WeatherPhenomenon ;
weather:hasTemperatureValue _:blank17 ;
weather:belongsToWeatherState weather:weatherState1 .

_:blank18 muo:numericalValue "0.58"^^xsd:float ;
muo:measuredIn weather:percent .

weather:humidity1 a weather:WeatherPhenomenon ;
weather:hasHumidityValue _:blank18 ;
weather:belongsToWeatherState weather:weatherState1 .

A.2. OUTPUT OF WEATHER IMPORTER IN TURTLE SYNTAX 123

_:blank19 muo:numericalValue "-0.8"^^xsd:float ;
muo:measuredIn muo:degrees-Celsius .

weather:dewPoint1 a weather:WeatherPhenomenon ;
weather:hasDewPointValue _:blank19 ;
weather:belongsToWeatherState weather:weatherState1 .

_:blank20 muo:numericalValue "1010.0"^^xsd:float ;
muo:measuredIn weather:hectopascal .

weather:pressure1 a weather:WeatherPhenomenon ;
weather:hasPressureValue _:blank20 ;
weather:belongsToWeatherState weather:weatherState1 .

_:blank21 muo:numericalValue "1.5"^^xsd:float ;
muo:measuredIn weather:metresPerSecond .

_:blank22 muo:numericalValue 47 ;
muo:measuredIn muo:degree .

weather:wind1 a weather:WeatherPhenomenon ;
weather:hasWindSpeed _:blank21 ;
weather:hasWindDirection _:blank22 ;
weather:belongsToWeatherState weather:weatherState1 .

_:blank23 muo:numericalValue 236 ;
muo:measuredIn muo:degree .

_:blank24 muo:numericalValue "33.42"^^xsd:float ;
muo:measuredIn muo:degree .

weather:sunPosition1.0 a weather:WeatherPhenomenon ;
weather:hasSunDirection _:blank23 ;
weather:hasSunElevationAngle _:blank24 ;
weather:belongsToWeatherState weather:weatherState1 .

weather:weatherState1 weather:hasCondition weather:PartlyCloud .

weather:weatherReport1 weather:hasWeatherState weather:weatherReport1 .

APPENDIX B
Glossary

A | B | C | D | E | F | H | I | L | M | N | O | P | R | S | T | U | V | W

A

Above room temperature
Sub-concept of Temperature representing a temperature of more than 25 and less than or
equal to 30 ◦C. 68, 69, 74, 81, 87, 106, 118, see Temperature.

Airing weather
Sub-concept of Weather state representing a Weather state that is an instance of Fair
weather and Pleasant temperature weather at the same time. 69, 78–81, 149, see Weather
state, Fair weather, Pleasant temperature weather.

alt
Property defined by the Basic Geo (WGS84 lat/long) Vocabulary [74] specifying the height
above MSL (mean sea level) of the location the Weather report is valid for, in metres. 20,
115, see Weather report, Point.

Astronomical twilight
Sub-concept of Sun position that represents the sun being more than 12 degrees and no
more than 18 degrees below horizon. 69, 73, 117, see Sun position, Twilight.

Atmospheric pressure
Sub-concept of Weather phenomenon representing atmospheric pressure. The value is
specified using the property has pressure value. Sub-concepts are Very low pressure, Low
pressure, Average pressure, High pressure, and Very high pressure. 69–71, 83, 113, 115,
116, 145, see Weather phenomenon, has pressure value, Very low pressure, Low pressure,
Average pressure, High pressure, Very high pressure.

125

126 GLOSSARY

Average humidity
Sub-concept of Humidity describing relative humidity of at least 40 and at most 70 percent.
69, 72, 116, see Humidity.

Average pressure
Sub-concept of Atmospheric pressure representing a pressure of at least 1008 and less than
1018 hPa. 69, 71, 83, 116, see Atmospheric pressure.

B

belongs to state
Object property that links instances of Weather state and Weather phenomenon; inverse
property of has weather phenomenon. 70, 112–114, see Weather state, Weather phe-
nomenon, has weather phenomenon.

belongs to weather report
Object property that links instances of Weather report and Weather state; inverse property
of has weather state. 69, 112–114, see Weather report, Weather state, has weather state.

Below room temperature
Sub-concept of Temperature representing a temperature of more than or equal to 10 and
less than 20 ◦C. 68, 69, 74, 81, 87, 106, 118, see Temperature.

C

Calm
Sub-concept of Wind representing wind with a speed below 1m/s. 69, 75, 78, 79, 82, 118,
see Wind.

Calm weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Calm or an instance of Light wind via the property has weather phenomenon. 69, 77–80,
105, 149, see Weather state, has weather phenomenon, Calm, Light wind.

Civil twilight
Sub-concept of Sun position that represents the sun being below horizon and at most 6
degrees below horizon. 69, 73, 117, see Sun position, Twilight.

Clear sky
Sub-concept of Cloud cover representing cloud coverage that is reported to be 0 okta. 69,
71, 79, 116, see okta, Cloud cover.

Clear weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Clear sky or Partly cloudy via the property has weather phenomenon. 69, 77, 79, 80, see
Weather state, has weather phenomenon, Clear sky, Partly cloudy.

GLOSSARY 127

Cloud cover
Sub-concept of Weather phenomenon describing the current cloud coverage in okta (integer
numbers from 0 to 9) which is given using the property has cloud cover; the altitude of the
cloud layer is given by the property has cloud altitude. Sub-concepts are Clear sky, Partly
cloudy, Mostly cloudy, Overcast, and Unknown cloud cover. 69, 71, 72, 115, 116, 145, see
Weather phenomenon, has cloud cover, has cloud altitude, okta, Clear sky, Partly cloudy,
Mostly cloudy, Overcast, Unknown cloud cover.

Cloudy weather
Sub-concept of Weather state representing a Weather state that is linked to an instance
of Mostly cloudy or Overcast via the property has weather phenomenon. 69, 77, 79, see
Weather state, has weather phenomenon, Mostly cloudy, Overcast.

Cold
Sub-concept of Temperature representing a temperature of more than or equal to 0 and less
than 10 ◦C. 68, 69, 74, 80, 87, 106, 118, see Temperature.

Cold weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Cold or Frost via the property has weather phenomenon. 69, 77, 80, see Weather state, has
weather phenomenon, Cold, Frost.

Current weather report
Sub-concept of Weather report describing the current weather. 68, 69, 85, 89, 90, 103, 118,
119, 146, 149, see Weather report.

Current weather report from sensor
Sub-concept of Current weather report; compiled from data from a Sensor source. 68, 69,
89, 119, see Weather report, Current weather report, Sensor source.

Current weather report from service
Sub-concept of Current weather report; compiled from data from a Service source. 68, 69,
89, 119, see Weather report, Current weather report, Service source.

D

Day
Sub-concept of Sun position that represents the sun being exactly at or above the horizon.
69, 73, 79, 81, 117, see Sun position.

Dew point
Sub-concept of Weather phenomenon that describes the dew point. The value is given using
the property has dew point value. 68, 69, 75, 113, 115, see Weather phenomenon, has dew
point value.

128 GLOSSARY

Directional wind
Sub-concept of Wind including a direction. 69, 75, 118, see Wind, North wind, East wind,
South wind, West wind.

Dry
Sub-concept of Humidity describing relative humidity of at least 30 and less than 40 percent.
69, 72, 80, 116, see Humidity.

Dry weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Dry or Very dry via the property has weather phenomenon. 69, 77, 80, see Weather state,
has weather phenomenon, Dry, Very dry.

E

East wind
Sub-concept of Wind representing wind approximately coming from the east, i.e. originating
from a direction of at least 45 and less than 135 degrees. 69, 75, 118, see Wind, Directional
wind.

End time
The time a Weather report is valid until, given by an instance of the concept Interval from
OWL-Time [75] that specifies the interval between the report’s Observation time and its
End time. 85, 102, 103, see Weather report, has end time, Start time, Observation time,
Interval.

Extremely heavy rain
Sub-concept of Precipitation representing a precipitation probability greater than 0 and an
intensity of more than 50 and at most 100mm/h. 69, 72, 81, 117, see Precipitation.

F

Fair weather
Sub-concept of Weather state representing a Weather state that is an instance of Calm
weather, Clear weather, and No rain weather at the same time. 69, 78–81, 108, see Weather
state, Calm weather, Clear weather, No rain weather.

Forecast weather report
Sub-concept of Weather report for some time after its Observation time. 68, 69, 89, 118,
see Weather report, Observation time, Short range weather report, Medium range weather
report, Long range weather report.

Frost
Sub-concept of Temperature representing a temperature below 0 ◦C. 68, 69, 74, 80, 87, 93,
106, 118, see Temperature.

GLOSSARY 129

H

has cloud altitude
Property that specifies the cloud altitude of a cloud layer represented by an instance of Cloud
cover. This property makes use of concepts and properties defined by the Measurement
Units Ontology [96] to provide both a value and its unit; SmartHomeWeather specifies the
cloud altitude in metres above sea level (MSL). 115, see Cloud cover.

has cloud cover
Property that specifies the cloud coverage of a cloud layer represented by an instance
of Cloud cover. This property makes use of concepts and properties defined by the
Measurement Units Ontology [96] to provide both a value and its unit; SmartHomeWeather
specifies the cloud coverage in okta. 115, 116, see Cloud cover, okta.

has condition
Object property that links instances of Weather state and Weather condition; does not have
an inverse property. 69, 81, 112, 114, see Weather state, Weather condition.

has dew point value
Property that specifies the dew point value of an instance of Dew point. This property
makes use of concepts and properties defined by the Measurement Units Ontology [96]
to provide both a value and its unit; SmartHomeWeather specifies the dew point value in
degrees Celsius. 113, 115, see Dew point.

has end time
An object property of Weather report that specifies the report’s End time. 70, 84, 85, 113,
114, see Weather report, End time, has start time, Observation time.

has humidity value
Property that specifies the humidity value of an instance of Humidity. This property makes
use of concepts and properties defined by the Measurement Units Ontology [96] to provide
both a value and its unit; SmartHomeWeather specifies the humidity value as a decimal
value in the interval [0, 1]. 113, 115, 116, see Humidity.

has next weather state
Property that links an instance of Weather state to the immediately succeeding instance
concerning their Start times, if such an instance exists. Both this property and its reverse
property has previous weather state are functional properties. 70, 94, 95, 114, 120, see
Weather state, has previous weather state.

has observation time
An object property of Weather report that specifies the report’s Observation time. 70, 84,
85, 113, 114, see Weather report, Observation time.

has precipitation intensity
Property that specifies the precipitation intensity of an instance of Precipitation. This prop-
erty makes use of concepts and properties defined by the Measurement Units Ontology [96]

130 GLOSSARY

to provide both a value and its unit; SmartHomeWeather specifies the precipitation intensity
in millimetres per hour (mm/h). 113, 115–117, see Precipitation.

has precipitation probability
Property that specifies the precipitation probability of an instance of Precipitation. This
property makes use of concepts and properties defined by the Measurement Units Ontol-
ogy [96] to provide both a value and its unit; SmartHomeWeather specifies the precipitation
probability as a decimal value in the interval [0, 1]. 113, 115–117, see Precipitation.

has pressure value
Property that specifies the pressure value of an instance of Atmospheric pressure. This
property makes use of concepts and properties defined by the Measurement Units Ontol-
ogy [96] to provide both a value and its unit; SmartHomeWeather specifies the pressure
value in hectopascal (hPa). 83, 113, 115, 116, see Atmospheric pressure.

has previous weather state
Property that links an instance of Weather state to the immediately preceding instance
concerning their Start times, if such an instance exists. Both this property and its reverse
property has next weather state are functional properties. 70, 114, see Weather state, has
next weather state.

has priority
A data property of Weather report that specifies the report’s Priority. 70, 113, see Weather
report, Priority.

has solar radiation value
Property that specifies the solar radiation value of an instance of Solar radiation. This prop-
erty makes use of concepts and properties defined by the Measurement Units Ontology [96]
to provide both a value and its unit; SmartHomeWeather specifies the solar radiation value
in watt per square meter (W/m2). 113, 115, 117, see Solar radiation.

has source
Object property that links instances of Weather report and Weather source; inverse property
of is source of . 69, 75, 89, 112–114, 119, see Weather report, Weather source, is source of.

has start time
An object property of Weather report that specifies the report’s Start time. 70, 75, 84, 85,
89, 113, 114, 118, 119, see Weather report, Start time, has end time, Observation time.

has sun direction
Property that specifies the sun’s direction of an instance of Sun position. This property
makes use of concepts and properties defined by the Measurement Units Ontology [96]
to provide both a value and its unit; SmartHomeWeather specifies the sun’s direction in
degrees whereby 0◦ denotes north, 90◦ denotes east etc. 113, 115, 117, see Sun position.

has sun elevation angle
Property that specifies the sun’s elevation angle (the sun’s height above horizon) of an

GLOSSARY 131

instance of Sun position. This property makes use of concepts and properties defined by the
Measurement Units Ontology [96] to provide both a value and its unit; SmartHomeWeather
specifies the sun’s elevation angle in degrees. 113, 115, 117, see Sun position.

has temperature value
Property that specifies the temperature value of an instance of Temperature. This property
makes use of concepts and properties defined by the Measurement Units Ontology [96] to
provide both a value and its unit; SmartHomeWeather specifies the temperature value in
degrees Celsius. 86, 87, 89, 105, 106, 113, 115, 118, see Temperature.

has weather phenomenon
Object property that links instances of Weather state and Weather phenomenon; inverse
property of belongs to state. 70, 78–82, 91, 112–114, see Weather state, Weather phe-
nomenon, belongs to state.

has weather state
Object property that links instances of Weather report and Weather state; inverse property
of belongs to weather report. 69, 91, 112–114, see Weather report, Weather state, belongs
to weather report.

has wind direction
Property that specifies the wind direction of an instance of Wind. This property makes use
of concepts and properties defined by the Measurement Units Ontology [96] to provide both
a value and its unit; SmartHomeWeather specifies the wind direction in degrees whereby
0◦ denotes north, 90◦ denotes east etc. 75, 113, 115, 118, see Wind.

has wind speed
Property that specifies the wind speed of an instance of Wind. This property makes use of
concepts and properties defined by the Measurement Units Ontology [96] to provide both a
value and its unit; SmartHomeWeather specifies the wind speed in metres per second (m/s).
113, 115, 118, see Wind.

Heat
Sub-concept of Temperature representing a temperature above 30 ◦C. 68, 69, 74, 80, 87,
106, 118, see Temperature.

Heavy rain
Sub-concept of Precipitation representing a precipitation probability greater than 0 and an
intensity of more than 20 and at most 50mm/h. 69, 72, 81, 108, 116, see Precipitation.

High pressure
Sub-concept of Atmospheric pressure representing a pressure of at least 1018 and less than
1028 hPa. 69, 71, 83, 116, see Atmospheric pressure.

High radiation
Sub-concept of Solar radiation describing solar radiation of at least 500W/m2 and less
than 750W/m2. 69, 73, 117, see Solar radiation.

132 GLOSSARY

Hot weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Heat via the property has weather phenomenon. 69, 78, 80, see Weather state, has weather
phenomenon, Heat.

Humidity
Sub-concept of Weather phenomenon representing the relative humidity of the air; the
humidity value is specified using the property has humidity value. Sub-concepts are Very
dry, Dry, Average humidity, Moist, and Very moist. 68, 69, 72, 113, 115, 116, 145, see
Weather phenomenon, has humidity value, Very dry, Dry, Average humidity, Moist, Very
moist.

Hurricane
Sub-concept of Wind representing wind with a speed of at least 32m/s. 69, 75, 118, see
Wind.

I

Instant
Sub-concept of Temporal entity defined by OWL-Time [75] that specifies an instant. 20, 84,
85, 98, 100, 114, see Temporal entity, Interval.

Interval
Sub-concept of Temporal entity defined by OWL-Time [75] that specifies a period of time
by its length (not start and end time). 20, 84, 85, 89, 100, 114, see Temporal entity, Instant.

is source of
Object property that links instances of Weather report and Weather source; inverse property
of has source. 69, 112–114, see Weather report, Weather source, has source.

L

lat
Property defined by the Basic Geo (WGS84 lat/long) Vocabulary [74] specifying the latitude
of the Point a Weather report is valid for, given as a decimal number. Positive values refer
to positions north of the equator, negative values refer to positions south of the equator. 20,
115, see Weather report, Point.

Light rain
Sub-concept of Precipitation representing a precipitation probability greater than 0 and an
intensity of more than 0 and at most 5mm/h. 69, 72, 81, 116, see Precipitation.

Light wind
Sub-concept of Wind representing wind with a speed of at least 1 and less than 10m/s. 69,
75, 78, 79, 118, see Wind.

GLOSSARY 133

location
An object property of Weather report the geographical position the Weather report is valid
for, given by altitude, longitude and latitude, using the WGS84 reference model [92]; links
to an instance of the concept Point of the Basic Geo (WGS84 lat/long) Vocabulary [74]. 70,
87, 113–115, 146, see Weather report, Point, lat, long, alt.

long
Property defined by the Basic Geo (WGS84 lat/long) Vocabulary [74] specifying the
longitude of the Point a Weather report is valid for, given as a decimal number. Positive
values refer to positions east of the prime meridian at Greenwich, negative values refer to
positions west of the prime meridian. 20, 115, see Weather report, Point.

Long range weather report
Sub-concept of Weather report describing a forecast for a point of time at least 12 hours in
the future relative to the Observation time. Its sub-concepts are Forecast 15 hours weather
report, Forecast 18 hours weather report, Forecast 21 hours weather report, and Forecast
24 hours weather report. 68, 69, 76, 118, see Weather report, Forecast weather report,
Observation time.

Low pressure
Sub-concept of Atmospheric pressure representing a pressure of at least 998 and less than
1008 hPa. 69, 71, 83, 116, see Atmospheric pressure.

Low radiation
Sub-concept of Solar radiation describing solar radiation of more than 0W/m2 and less
than 250W/m2. 69, 72, 117, see Solar radiation.

M

Medium radiation
Sub-concept of Solar radiation describing solar radiation of at least 250W/m2 and less
than 500W/m2. 69, 72, 117, see Solar radiation.

Medium rain
Sub-concept of Precipitation representing a precipitation probability greater than 0 and an
intensity of more than 5 and at most 20mm/h. 69, 72, 81, 116, see Precipitation.

Medium range weather report
Sub-concept of Weather report describing a forecast for a point of time more than 3 hours
and less than 12 hours in the future relative to the Observation time. Its sub-concepts are
Forecast 6 hours weather report, Forecast 9 hours weather report, and Forecast 12 hours
weather report. 68, 69, 76, 118, see Weather report, Forecast weather report, Observation
time.

Moist
Sub-concept of Humidity describing relative humidity of more than 70 and at most 80
percent. 69, 72, 80, 116, see Humidity.

134 GLOSSARY

Moist weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Moist or Very moist via the property has weather phenomenon. 69, 78, 80, see Weather
state, has weather phenomenon, Moist, Very moist.

Mostly cloudy
Sub-concept of Cloud cover representing cloud coverage that is reported to be 5, 6, or
7 okta. 69, 71, 79, 116, see okta, Cloud cover.

N

Nautical twilight
Sub-concept of Sun position that represents the sun being more than 6 degrees and no more
than 12 degrees below horizon. 69, 73, 117, see Sun position, Twilight.

Night
Sub-concept of Sun position that represents the sun being more than 18 degrees below
horizon. 69, 74, 117, see Sun position.

No awning weather
Sub-concept of Weather state representing a Weather state that is either an instance of
Severe weather or is linked to an instance of Strong wind via the property has weather
phenomenon. 69, 79–82, see Weather state, has weather phenomenon, Severe weather,
Strong wind.

No radiation
Sub-concept of Solar radiation describing the absence of any solar radiation (0W/m2). 69,
72, 117, see Solar radiation.

No rain
Sub-concept of Precipitation representing absence of precipitation (because either the
intensity or the probability of precipitation is 0). 69, 72, 80, 81, 116, see Precipitation.

No rain weather
Sub-concept of Weather state representing a Weather state that is linked to an instance
of No rain via the property has weather phenomenon. 69, 78, 80, see Weather state, has
weather phenomenon, No rain.

North wind
Sub-concept of Wind representing wind approximately coming from the north, i.e. orig-
inating from a direction of at least 315 or less than 45 degrees. 69, 75, 118, see Wind,
Directional wind.

O

GLOSSARY 135

Observation time
The time when the weather data was collected from the weather sensor(s) or the Internet
weather service, given by an instance of the concept Instant from OWL-Time [75]. 85, 86,
102, 103, see Weather report, has observation time, Instant.

okta
Unit of measurement that specifies the amount of cloud cover on a range from 0 (Clear
sky) to 8 (Overcast); a value of 9 represents an Unknown cloud cover. 71, 115, see Cloud
cover, Clear sky, Partly cloudy, Mostly cloudy, Overcast, Unknown cloud cover.

Overcast
Sub-concept of Cloud cover representing cloud coverage that is reported to be 8 okta. 69,
71, 79, 116, see okta, Cloud cover.

P

Partly cloudy
Sub-concept of Cloud cover representing cloud coverage that is reported to be 1, 2, 3, or
4 okta. 69, 71, 79, 116, see okta, Cloud cover.

Pleasant temperature weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Below room temperature, Room temperature, or Above room temperature via the property
has weather phenomenon. 69, 78, 79, 81, see Weather state, has weather phenomenon,
Below room temperature, Room temperature, Above room temperature.

Point
A concept defined by the Basic Geo (WGS84 lat/long) Vocabulary [74] representing a
location which is given by alt(itude), long(itude), and lat(itude). It is connected from an
entity using the property location. 100, 114, see lat, long, alt, location.

Precipitation
Sub-concept of Weather phenomenon that describes precipitation (intensity and probabil-
ity). Intensity is specified by the property has precipitation intensity, probability by has
precipitation probability. Sub-concepts are No rain, Light rain, Medium rain, Heavy rain,
Extremely heavy rain, and Tropical storm rain. 69, 72, 73, 113, 115–117, 145, see Weather
phenomenon, has precipitation intensity, has precipitation probability, No rain, Light rain,
Medium rain, Heavy rain, Extremely heavy rain, Tropical storm rain.

Priority
An integer value indicating which Weather report for a certain period of time is to be
preferred over another Weather report for the same period of time. see Weather report, has
priority.

R

136 GLOSSARY

Rainy weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Light rain, Medium rain, Heavy rain, Extremely heavy rain, or Tropical storm rain via
the property has weather phenomenon. 69, 78, 81, 82, see Weather state, has weather
phenomenon, Light rain, Medium rain, Heavy rain, Extremely heavy rain, Tropical storm
rain.

Room temperature
Sub-concept of Temperature representing a temperature of least 20 and at most 25 ◦C. 68,
69, 74, 81, 87–89, 106, 108, 118, 149, see Temperature.

S

Sensor source
A sub-concept of Weather Source representing a sensor or a set of sensors offering some
kind of weather data. 68, 69, 76, 100, 112, 119, see Weather source.

Service source
A sub-concept of Weather Source representing an Internet weather service offering some
kind of weather data. 68, 69, 76, 100, 112, 119, see Weather source.

Severe weather
Sub-concept of Weather state representing a Weather state that is an instance of Stormy
weather and Very rainy weather at the same time. 69, 78, 80–82, 108, see Weather state,
Stormy weather, Very rainy weather.

Short range weather report
Sub-concept of Weather report describing a forecast for a point of time at most 3 hours in
the future relative to the Observation time. Its sub-concepts are Forecast 1 hour weather
report, Forecast 2 hours weather report, and Forecast 3 hours weather report. 68, 69, 76,
89, 93, 118, see Weather report, Forecast weather report, Observation time.

Solar radiation
Sub-concept of Weather phenomenon representing solar radiation; the value is specified
using the property has solar radiation value. Sub-concepts are No radiation, Low radiation,
Medium radiation, High radiation, and Very high radiation. 69, 72, 73, 113, 115, 117, 145,
see Weather phenomenon, has solar radiation value, No radiation, Low radiation, Medium
radiation, High radiation, Very high radiation.

Solar twilight
Sub-concept of Sun position that represents the sun being above horizon, but less than 6
degrees above. 69, 73, 117, see Sun position, Day.

South wind
Sub-concept of Wind representing wind approximately coming from the south, i.e. origi-
nating from a direction of at least 135 and less than 225 degrees. 69, 75, 118, see Wind,
Directional wind.

GLOSSARY 137

Start time
The time a Weather report is valid from, given by an instance of the concept Interval from
OWL-Time [75] that specifies the interval between the report’s Observation time and its
Start time. 68, 85, 102, 103, see Weather report, has start time, End time, Observation time,
Interval.

Storm
Sub-concept of Wind representing wind with a speed of at least 20m/s. 69, 75, 81, 118,
see Wind.

Stormy weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Storm or Hurricane via the property has weather phenomenon. 69, 78, 81, 82, see Weather
state, has weather phenomenon, Storm, Hurricane.

Strong wind
Sub-concept of Wind representing wind with a speed of at least 10 and less than 20m/s.
69, 75, 80, 82, 118, see Wind.

Sun below horizon
Sub-concept of Sun position that represents the sun being below the horizon. 69, 73, 117,
see Sun position, Night, Twilight.

Sun from east
Sub-concept of Sun position that represents a sun direction of more than 45 and at most
135 degrees. 69, 73, 117, see Sun position.

Sun from north
Sub-concept of Sun position that represents a sun direction of more than 315 or at most 45
degrees. 69, 73, 117, see Sun position.

Sun from south
Sub-concept of Sun position that represents a sun direction of more than 135 and at most
225 degrees. 69, 73, 117, see Sun position.

Sun from west
Sub-concept of Sun position that represents a sun direction of more than 225 and at most
315 degrees. 69, 73, 117, see Sun position.

Sun position
Sub-concept of Weather phenomenon describing the position of the sun, given by its
elevation above horizon (specified by the property has sun elevation angle) and its direction
(specified by the property has sun direction). Sub-concepts are Day, Solar twilight, Twilight,
Civil twilight, Nautical twilight, Astronomical twilight, and Night for the elevation above
horizon, and Sun from north, Sun from east, Sun from South, and Sun from West for the
direction. 69, 73, 74, 113, 115, 117, 145, see Weather phenomenon, has sun elevation
angle, has sun direction, Day, Solar twilight, Twilight, Civil twilight, Nautical twilight,

138 GLOSSARY

Astronomical twilight, Night, Sun from north, Sun from east, Sun from south, Sun from
west.

Sun protection weather
Sub-concept of Weather state representing a Weather state that is an instance of Clear
weather and linked to an instance of Day via the property has weather phenomenon. 69,
79, 81, 149, see Weather state, has weather phenomenon, Clear weather, Day.

T

Temperature
Sub-concept of Weather phenomenon representing temperature. The temperature value is
specified using the property has temperature value. Sub-concepts are Frost, Cold, Below
room temperature, Room temperature, Above room temperature, and Heat. 68, 69, 74, 85–
89, 93, 105, 106, 113, 115, 118, 145, 146, 149, see Weather phenomenon, has temperature
value, Frost, Cold, Below room temperature, Room temperature, Above room temperature,
Heat.

Temporal entity
Concept defined by OWL-Time [75]; either an Instant or an Interval. 20, 84, 85, 100, see
Instant, Interval.

Thunderstorm
Sub-concept of Weather state representing a Weather state that is an instance of Severe
weather and is linked to the instance Thunder of the concept Weather condition via the
property has condition at the same time. 69, 79, 81, see Weather state, has condition,
Weather condition, Severe weather.

Tropical storm rain
Sub-concept of Precipitation representing a precipitation probability greater than 0 and an
intensity of more than 100mm/h. 69, 72, 81, 117, see Precipitation.

Twilight
Sub-concept of Sun position that represents the sun being below horizon and at most 18
degrees below horizon. 69, 73, 117, see Sun position, Civil twilight, Nautical twilight,
Astronomical twilight.

U

Unknown cloud cover
Sub-concept of Cloud cover representing cloud coverage that is reported to be 9 okta. 69,
71, 116, see okta, Cloud cover.

V

GLOSSARY 139

Very dry
Sub-concept of Humidity describing relative humidity of less than 30 percent. 69, 72, 80,
116, see Humidity.

Very high pressure
Sub-concept of Atmospheric pressure representing a pressure of at least 1028 hPa. 69, 71,
83, 116, see Atmospheric pressure.

Very high radiation
Sub-concept of Solar radiation describing solar radiation of at least 750W/m2. 69, 73,
117, see Solar radiation.

Very low pressure
Sub-concept of Atmospheric pressure representing a pressure of less than 998 hPa. 69, 70,
83, 116, see Atmospheric pressure.

Very moist
Sub-concept of Humidity describing relative humidity of more than 80 percent. 69, 72, 80,
116, see Humidity.

Very rainy weather
Sub-concept of Weather state representing a Weather state that is linked to an instance of
Heavy rain, Extremely heavy rain, or Tropical storm rain via the property has weather
phenomenon. By reasoning, it is a sub-concept of Rainy weather as well. 69, 78, 81, 82,
see Weather state, Rainy weather, Heavy rain, Extremely heavy rain, Tropical storm rain.

W

Weather condition
A concept describing the overall state of the weather, represented by (a combination of)
these individuals: Sun, Light clouds, Partly cloudy, Cloudy, Fog, Rain, Snow, Sleet, and
Thunder. 68–70, 78, 79, 82, 83, 100, 107, 111, 112, 114, 119, 145, see Weather state, has
condition.

Weather phenomenon
A concept that represents a certain weather element. Relevant weather elements are
Atmospheric pressure, Cloud cover, Dew point, Humidity, Precipitation, Solar radiation,
Sun position, Temperature, and Wind. 68–71, 75, 76, 78, 79, 82–84, 87, 89, 91, 93, 100,
105–108, 110, 111, 113, 114, 145, 149, see Atmospheric pressure, Cloud cover, Dew point,
Humidity, Precipitation, Solar radiation, Sun position, Temperature, Wind.

Weather report
Concept that summarises all data acquired at a certain Observation time for a certain
location from a Weather source, about the current weather or the weather some time in
the future. Exactly one Weather state is linked to each Weather report. 68–70, 75, 76, 82,
84–87, 89, 91, 93, 100, 102, 103, 107, 110, 111, 113, 114, 118–120, 145, 146, see Weather

140 GLOSSARY

state, Current weather report, Forecast weather report, Weather source, Observation time,
Start time, End time, location.

Weather report from sensor
Sub-concept of Weather report; contains data obtained from one or more Sensor sources.
68, 69, 89, 119, see Weather report, Sensor source.

Weather report from service
Sub-concept of Weather report; contains data obtained from an Internet Service source. 68,
69, 89, 119, 149, see Weather report, Service source.

Weather source
A concept representing a source for weather data, either a set of weather sensors or an
Internet weather service. Sub-concepts are Sensor source, and Service source. 68, 69, 76,
77, 82, 87, 89, 100, 107, 111, 112, 114, 145, see Sensor source, Service source.

Weather state
A concept that represents all data available about weather phenomena for a certain Weather
report. A set of instances of the concept Weather phenomenon are linked to every instance
of Weather state. 68–70, 76–82, 84, 89, 91, 93–95, 100, 107, 108, 110–112, 114, 145, see
Weather report, Weather phenomenon.

West wind
Sub-concept of Wind representing wind approximately coming from the west, i.e. origi-
nating from a direction of at least 225 and less than 315 degrees. 69, 75, 118, see Wind,
Directional wind.

Wind
Sub-concept of Weather phenomenon representing wind (speed and direction, the latter
is optional). Wind speed is given using the property has wind speed; wind direction is
specified using has wind direction. Sub-concepts are Directional wind, North wind, East
wind, South wind, and West wind for the wind direction, and Calm, Light wind, Strong wind,
Storm, and Hurricane for the wind speed. 69, 74, 75, 113, 115, 118, 145, see Weather
phenomenon, has wind speed, has wind direction, Directional wind, North wind, East wind,
South wind, West wind, Calm, Light wind, Strong wind, Storm, Hurricane.

Windy weather
Sub-concept of Weather state representing a Weather state that is either an instance of
Stormy weather or linked to an instance of Strong wind via the property has weather
phenomenon. 69, 79–82, see Weather state, has weather phenomenon, Stormy weather,
Strong wind.

APPENDIX C
Acronyms

ADDS Aviation Digital Data Service

AI Artificial Intelligence

AMS American Meteorological Society

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BACnet Building automation and control networks

BAS Building Automation Systems

CSV Comma-separated values

DAML DARPA Agent Markup Language

DARPA Defense Advanced Research Projects Agency

DOAP Description of a Project

DOM Document Object Model

DWD Deutscher Wetterdienst (“German weather service”)

EHS European Home Systems Protocol

EIB European Installation Bus

FAA Federal Aviation Administration

FOAF Friend of a Friend

141

142 APPENDIX C. ACRONYMS

FTP File Transfer Protocol

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HVAC Heating, ventilation and air conditioning

ICAO International Civil Aviation Organization

JSON JavaScript Object Notation

JSONP JSON with padding

KIF Knowledge Interchange Format

LCN Local Control Network

LKIF Legal Knowledge Interchange Format

METAR Meteorological Aerodrome Report

MIT Massachussets Institute of Technology

MSL Mean sea level

MUO Measurements Units Ontology

N3 Notation3

NASA National Aeronautics and Space Administration

NextGen Next Generation Air Transportation System

NNEW Next Generation Network Enabled Weather

NOAA National Oceanic and Atmospheric Administration

NWS National Weather Service

OASIS Organization for the Advancement of Structured Information Standards

OBO The Open Biological and Biomedical Ontologies

OGC Open Geospatial Consortium

OIL Ontology Interchange Language

OM Ontology of Units of Measure and Related Concepts

OWL Web Ontology Language

PATO Phenotypic Quality Ontology

143

PLC Programmable Logic Controller

PSA Plataforma Solar de Almería

QUDT Quantities, Units, Dimensions and Data Types in OWL and XML

QUOMOS OASIS Quantities and Units of Measure Ontology Standard

RDF Resource Description Framework

RDFS RDF schema

REST Representational State Transfer

RFC Request for Comments

RSS Rich Site Summary

SAX Simple API for XML

SIOC Semantically-Interlinked Online Communities

SKOS Simple Knowledge Organization System

SOAP Simple Object Access Protocol

SPA Solar Position Algorithm

SPARQL SPARQL Protocol and RDF Query Language

SSN Semantic Sensor Network

SSN-XG W3C Semantic Sensor Network Incubator group

SSW Semantic Sensor Web

SWE Sensor Web Enablement

SWEET Semantic Web for Earth and Environmental Terminology

SWIG W3C Semantic Web Interest Group

SWRL Semantic Web Rule Language

SYNOP Surface Synoptic Observations

TC Technical Committee

TOVE TOronto Visual Enterprise

Turtle Terse RDF Triple Language

UMBEL Upper Mapping and Binding Exchange Layer

144 APPENDIX C. ACRONYMS

UML Unified Modeling Language

UPON Unified Process for ONtology building

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WGS84 World Geodetic System 1984

WMO World Meteorological Organization

XML Extensible Markup Language

XSD XML Schema Definition

List of Figures

2.1 Example of a simple ontological model . 8
2.2 Example of a simple RDF model . 10
2.3 Example of a simple RDFS model . 12
2.4 Example of the use of the Basic Geo (WGS84 lat/long) Vocabulary 19
2.5 Example of the use of the OWL-Time for describing an instant 20
2.6 Example of the use of the OWL-Time for the description an interval 21
2.7 Example of a data model lacking units of measurement 21
2.8 Example of the use of MUO . 22
2.9 Example of the use of OM . 23

4.1 The workflow proposed by Uschold and King . 44
4.2 The workflow proposed by TOVE . 45
4.3 The workflow proposed by Ontology 101 . 48
4.4 The workflow proposed by UPON . 49
4.5 States and activities proposed by METHONTOLOGY 51
4.6 Template for the Ontology Requirements Specification Document 56
4.7 Tasks of the conceptualisation activity . 56
4.8 Example of a concept-classification tree . 57
4.9 Example of a binary relations diagram . 58

5.1 Example diagram . 63
5.2 Concept-classification tree for Weather condition 70
5.3 Concept-classification tree for Weather phenomenon 71
5.4 Concept-classification tree for Atmospheric pressure 71
5.5 Concept-classification tree for Cloud cover . 72
5.6 Concept-classification tree for Humidity . 72
5.7 Concept-classification tree for Precipitation . 73
5.8 Concept-classification tree for Solar radiation . 73
5.9 Concept-classification tree for Sun position . 74
5.10 Concept-classification tree for Temperature . 74
5.11 Concept-classification tree for Wind . 75
5.12 Concept-classification tree for Weather report . 76
5.13 Concept-classification tree for Weather source . 77
5.14 Concept-classification tree for Weather state . 77

145

146 List of Figures

5.15 Binary relations diagram . 82
5.16 An instance of Current weather report . 85
5.17 A instance of Weather report . 86
5.18 An instance of Temperature without units . 86
5.19 An instance of Temperature using MUO . 86
5.20 An instance of Weather report together with its location 87

6.1 The domain model used in Weather importer . 99
6.2 The most important classes of the domain model of Weather importer 100
6.3 Classes used for output in Turtle syntax . 105

List of Tables

3.1 Names, operators, web pages, and coverage areas of weather services 31
3.2 Data formats and data access protocols of weather services 32
3.3 Access restrictions and terms of use for weather services 33
3.4 Stability of weather services . 34
3.5 Weather data provided by weather services . 35
3.6 Advantages and disadvantages of Internet weather services 36
3.7 Assignment of competency questions to weather element(s) 40

4.1 Advantages and disadvantages of ontology design methodologies 53
4.2 Template for the glossary of terms . 57
4.3 Template for the concept dictionary . 58
4.4 Template for the binary relations table . 58
4.5 Template for the instance attributes table . 59
4.6 Template for the class attributes table . 59
4.7 Template for the constants table . 59
4.8 Template for the formal axioms table . 60
4.9 Template for the instants table . 60

A.1 Concept dictionary (1) . 112
A.2 Concept dictionary (2) . 113
A.3 Binary relations table . 114
A.4 Instance attributes table . 115
A.5 Class attributes table (1) . 116
A.6 Class attributes table (2) . 117
A.7 Class attributes table (3) . 118
A.8 Class attributes table (4) . 119
A.9 Instances table . 119

147

List of Listings

2.1 RDF example in RDF/XML syntax . 11
2.2 RDF example in Turtle syntax . 11
2.3 Example SPARQL query . 14
2.4 Example SWRL rule . 14
3.1 Structure of the XML document returned by the API of yr.no 36
3.2 A <time> element returned by the API of yr.no (1) 37
3.3 A <time> element returned by the API of yr.no (2) 37
5.1 Definition of the concept Calm weather . 78
5.2 Definition of the concept Airing weather . 78
5.3 Definition of the concept Sun protection weather 79
5.4 Definition of Weather phenomenon in Turtle syntax 87
5.5 Definition of Temperature in Turtle syntax . 88
5.6 Definition of Room temperature in Turtle syntax 88
5.7 Definition of Weather report from service in Turtle syntax 89
5.8 Definition of Current weather report in Turtle syntax 90
6.1 Example statements for fetch mode . 103
6.2 Example statements for timestamps mode . 104

149

Bibliography

[1] Intertek. http://www.intertek.com/. Accessed: 2013-08-08.

[2] Nicole King. Smart Home – A Definition. 2003.

[3] Li Jiang, Da-You Liu, and Bo Yang. Smart home research. In Proceedings of 2004
International Conference on Machine Learning and Cybernetics, volume 2, pages 659–
663, Shanghai, August 2004.

[4] Michael C. Mozer. Lessons from an adaptive house. In Smart environments: Technologies,
protocols, and applications, pages 271–294. John Wiley & Sons Inc.

[5] Julie A. Kientz, Shwetak N. Patel, Brian Jones, Ed Price, Elizabeth D. Mynatt, and
Gregory D. Abowd. The Georgia Tech Aware Home. In CHI ’08 Proceedings, pages
3675–3680, April 2008.

[6] Sumi Helal, William Mann, Hicham El-Zabadani, Jeffrey King, Youssef Kaddoura, and
Erwin Jansen. The Gator Tech Smart House: A Programmable Pervasive Space. Computer,
38(3):50–60, March 2005.

[7] Tiiu Koskela and Kaisa Väänänen-Vainio-Mattila. Evolution towards smart home envi-
ronments: empirical evaluation of three user interfaces. Personal Ubiquitous Computing,
8(3-4):234–240, July 2004.

[8] Stephen S. Intille. Designing a Home of the Future. IEEE Pervasive Computing, 1(2):76–
82, April 2002.

[9] A.J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal, Stefan Saroiu, and
Colin Dixon. Home automation in the wild: challenges and opportunities. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages
2115–2124, Vancouver, BC, Canada, May 2011.

[10] Shaun Salzberg. home maestro. http://shaunsalzberg.com/medialab/homemaestro. Ac-
cessed: 2013-08-08.

[11] W. Keith Edwards, Rebecca E. Grinter, Ratul Mahajan, and David Wetherall. Advancing
the State of Home Networking. Communications of the ACM, 54(6):62–71, June 2011.

151

http://www.intertek.com/
http://shaunsalzberg.com/medialab/homemaestro

152 BIBLIOGRAPHY

[12] Institute of Computer Aided Automation, Automation Systems Group, ThinkHome –
Overview. https://www.auto.tuwien.ac.at/projectsites/thinkhome/overview.html. Accessed:
2013-08-08.

[13] Christian Reinisch, Mario J. Kofler, Félix Iglesias, and Wolfgang Kastner. ThinkHome:
Energy Efficiency in Future Smart Homes. EURASIP Journal on Embedded Systems, 2011,
January 2011.

[14] Christian Reinisch, Mario J. Kofler, and Wolfgang Kastner. ThinkHome: A Smart Home
as Digital Ecosystem. In Proceedings of 4th IEEE International Conference on Digital
Ecosystems and Technologies (IEEE DEST 2010), pages 256–261, April 2010.

[15] Samuel Prívara, Jan Široký, Lukáš Ferkl, and Jiří Cigler. Model predictive control of a
building heating system: The first experience. Energy and Buildings, 43(2–3):564–572,
2011.

[16] Petru-Daniel Moroşan, Romain Bourdais, Didier Dumur, and Jean Buisson. Building
temperature regulation using a distributed model predictive control. Energy and Buildings,
42(9):1445–1452, 2010.

[17] Frauke Oldewurtel, Alessandra Parisio, Colin N. Jones, Dimitrios Gyalistras, Markus
Gwerder, Vanessa Stauch, Beat Lehmann, and Manfred Morari. Use of model predictive
control and weather forecasts for energy efficient building climate control. Energy and
Buildings, 45(0):15–27, 2012.

[18] Dieter Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer, 2nd edition, 2003.

[19] W3C OWL Working Group, editor. OWL 2 Web Ontology Language Doc-
ument Overview (Second Edition). W3C Recommendation, 11 December 2012.
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/. Accessed: 2013-08-08.
Latest version available at http://www.w3.org/TR/owl2-overview/.

[20] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In Pro-
ceedings of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2006), pages 57–67, 2006.

[21] Jon Barwise. An Introduction to First-Order Logic. In Jon Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics,
pages 5–46. Elsevier, 1977.

[22] V. Richard Benjamins, Dieter Fensel, Stefan Decker, and Asunción Gómez-Pérez. (KA)2:
building ontologies for the internet: a mid-term report. International Journal of Human-
Computer Studies, 51:687–712, 1999.

[23] Elena Simperl. Reusing ontologies on the Semantic Web: A feasibility study. Data &
Knowledge Engineering, 68(10):905–925, October 2009.

https://www.auto.tuwien.ac.at/projectsites/thinkhome/overview.html
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/owl2-overview/

BIBLIOGRAPHY 153

[24] Michael Genesereth, Richard E. Fikes, Ronald Brachman, Thomas Gruber, Patrick Hayes,
Reed Letsinger, Vladimir Ligschitz, Robert MacGregor, John McCarthy, Peter Norvig,
and Ramesh Patil. Knowledge Interchange Format Version 3.0 Reference Manual. 1992.

[25] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, Pe-
ter F. Patel-Schneider, and Lynn Andrea Stein. DAML+OIL (March 2001) Refer-
ence Description. W3C Note, 18 December 2001. http://www.w3.org/TR/2001/NOTE-
daml+oil-reference-20011218. Accessed: 2013-08-08. Latest version available at
http://www.w3.org/TR/daml+oil-reference.

[26] The DARPA Agent Markup Language Homepage. http://www.daml.org/. Accessed:
2013-08-08.

[27] Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, and Peter F.
Patel-Schneider. OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelligent
Systems, 16(2):38–45, March 2001.

[28] Dan Brickley and R.V. Guha, editors. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, 10 February 2004. http://www.w3.org/TR/2004/REC-
rdf-schema-20040210/. Accessed: 2013-08-08. Latest version available at http://
www.w3.org/TR/rdf-schema/.

[29] edumbill / doap – RDF schema for describing software projects. https://github.com/
edumbill/doap/. Accessed: 2013-08-08.

[30] Dublin Core R©Metadata Initiative. http://dublincore.org/. Accessed: 2013-08-08.

[31] Internet Engineering Task Force, J. Kunze and T. Baker. The Dublin Core Metadata
Element Set. RFC 5013 (Informational), August 2007.

[32] The Friend of a Friend (FOAF) project. http://www.foaf-project.org/. Accessed: 2013-08-
08.

[33] Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.98. Namespace Docu-
ment 9 August 2010 – Marco Polo Edition. http://xmlns.com/foaf/spec/20100809.html.
Accessed: 2013-08-08. Latest version available at http://xmlns.com/foaf/spec/.

[34] Diego Berrueta, Dan Brickley, Stefan Decker, Sergio Fernández, Christoph
Görn, Andreas Harth, Tom Heath, Kingsley Idehen, Kjetil Kjernsmo, Alis-
tair Miles, Alexandre Passant, Axel Polleres, Luis Polo, and Michael Sintek.
SIOC Core Ontology Specification. W3C Member Submission 12 June 2007.
http://www.w3.org/Submission/2007/SUBM-sioc-spec-20070612/. Accessed: 2013-08-08.
Latest version available at http://www.w3.org/Submission/sioc-spec/.

[35] SKOS Simple Knowledge Organization System - Home Page.
http://www.w3.org/2004/02/skos/. Accessed: 2013-08-08.

http://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218
http://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218
http://www.w3.org/TR/daml+oil-reference
http://www.daml.org/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
https://github.com/edumbill/doap/
https://github.com/edumbill/doap/
http://dublincore.org/
http://www.foaf-project.org/
http://xmlns.com/foaf/spec/20100809.html
http://xmlns.com/foaf/spec/
http://www.w3.org/Submission/2007/SUBM-sioc-spec-20070612/
http://www.w3.org/Submission/sioc-spec/
http://www.w3.org/2004/02/skos/

154 BIBLIOGRAPHY

[36] Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization System
Reference. W3C Recommendation 18 August 2009. http://www.w3.org/TR/2009/REC-
skos-reference-20090818/. Accessed: 2013-08-08. Latest version available at
http://www.w3.org/TR/skos-reference.

[37] UMBEL Web Site. http://umbel.org/. Accessed: 2013-08-08.

[38] Adam Pease, Ian Niles, and John Li. The Suggested Upper Merged Ontology: A Large
Ontology for the Semantic Web and its Applications. In Working Notes of the AAAI-2002
Workshop on Ontologies and the Semantic Web, 2002.

[39] W3C Semantic Web Activity Homepage. http://www.w3.org/2001/sw/. Accessed: 2013-
08-08.

[40] World Wide Web Consortium (W3C). http://www.w3.org/. Accessed: 2013-08-08.

[41] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American,
284(5):34–43, May 2001.

[42] Graham Klyne and Jeremy J. Carroll, editors. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. Accessed: 2013-08-08. Latest
version available at http://www.w3.org/TR/rdf-concepts/.

[43] Internet Engineering Task Force, T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifier (URI): Generic Syntax. RFC 3986 (INTERNET STANDARD), January
2005.

[44] Shudi Gao, C. M. Sperberg-McQueen, and Henry S. Thompson, editors. W3C XML
Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Recommendation 5 April
2012. http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/. Accessed: 2013-08-
08. Latest version available at http://www.w3.org/TR/xmlschema11-1/.

[45] Paul V. Biron and Ashok Malhotra, editors. XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation, 28 October 2004. http://www.w3.org/TR/2004/REC-
xmlschema-2-20041028/. Accessed: 2013-08-08. Latest version available at
http://www.w3.org/TR/xmlschema-2/.

[46] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau,
editors. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation
26 November 2008. http://www.w3.org/TR/2008/REC-xml-20081126/. Accessed: 2013-
08-08. Latest version available at http://www.w3.org/TR/xml/.

[47] Dave Beckett, editor. RDF/XML Syntax Specification (Revised). W3C Recommendation,
10 February 2004. http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.
Accessed: 2013-08-08. Latest version available at http://www.w3.org/TR/rdf-syntax-
grammar/.

http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/skos-reference
http://umbel.org/
http://www.w3.org/2001/sw/
http://www.w3.org/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/

BIBLIOGRAPHY 155

[48] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax. W3C
Team Submission 28 March 2011. http://www.w3.org/TeamSubmission/2011/SUBM-
n3-20110328/. Accessed: 2013-08-08. Latest version available at http://
www.w3.org/TeamSubmission/n3/.

[49] Dave Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers. Turtle. Terse
RDF Triple Language. W3C Candidate Recommendation (work in progress), 19 February
2013. http://www.w3.org/TR/2013/CR-turtle-20130219/. Accessed: 2013-08-08. Latest
version available at http://www.w3.org/TR/rdf-syntax-grammar/.

[50] Patrick Hayes. RDF Semantics. W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. Accessed: 2013-08-08. Latest ver-
sion available at http://www.w3.org/TR/rdf-mt/.

[51] OWL Working Group. http://www.w3.org/2007/OWL/wiki/OWL_Working_Group. Ac-
cessed: 2013-08-08.

[52] Ian Jacobs. World Wide Web Consortium Process Document, 14 October 2005.
http://www.w3.org/2005/10/Process-20051014/. Accessed: 2013-08-08. Latest version
available at http://www.w3.org/Consortium/Process/.

[53] W3C OWL Working Group. OWL Web Ontology Language Overview. W3C Recom-
mendation 10 February 2004. http://www.w3.org/TR/2004/REC-owl-features-20040210/.
Accessed: 2013-08-08. Latest version available at http://www.w3.org/TR/owl-features/.

[54] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2nd edition, December 2002.

[55] Stefano Mazzocchi. Closed World vs. Open World: the First Semantic Web Battle.
http://www.betaversion.org/ stefano/linotype/news/91/, June 2005. Accessed: 2013-08-08.

[56] Atilla Elci, Behnam Rahnama, and Saman Kamran. Defining a Strategy to Select Either
of Closed/Open World Assumptions on Semantic Robots. In Computer Software and
Applications, 2008. COMPSAC ’08. 32nd Annual IEEE International, pages 417–423,
2008.

[57] Raffaella Bernardi. Monotonic Reasoning from a Proof-Theoretic Perspective. In Geert-
Jan M. Kruijff and Richard T. Oehrle, editors, Proceedings of Formal Grammar 1999.

[58] The W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C Recommendation,
21 March 2013. http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/. Ac-
cessed: 2013-08-08. Latest version available at http://www.w3.org/TR/sparql11-overview/.

[59] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
W3C Member Submission, 21 May 2004. http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/. Accessed: 2013-08-14. Latest version available at http://www.w3.org/
Submission/SWRL/.

http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/2013/CR-turtle-20130219/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://www.w3.org/2005/10/Process-20051014/
http://www.w3.org/Consortium/Process/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/owl-features/
http://www.betaversion.org/~stefano/linotype/news/91/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/

156 BIBLIOGRAPHY

[60] The Protégé Ontology Editor and Knowledge Acquisition System. http://pro-
tege.stanford.edu/. Accessed: 2013-08-08.

[61] Pellet: OWL 2 Reasoner for Java. http://clarkparsia.com/pellet/. Accessed: 2013-08-08.

[62] RacerPro. http://semanticweb.org/wiki/RacerPro. Accessed: 2013-08-08.

[63] OWL : FaCT++. http://owl.man.ac.uk/factplusplus/. Accessed: 2013-08-08.

[64] HermiT OWL Reasoner. http://www.hermit-reasoner.com/. Accessed: 2013-08-08.

[65] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing, 2nd
edition, 2009.

[66] Mirko Presser, Payam M. Barnaghi, Markus Eurich, and Claudia Villalonga. The SENSEI
Project: Integrating the Physical World with the Digital World of the Network of the
Future. IEEE Communications Magazine, 47(4):1–4, 2009.

[67] Anil Aswani, Neal Master, Jay Taneja, Andrew Krioukov, David E. Culler, and Claire
Tomlin. Energy-Efficient Building HVAC Control Using Hybrid System LBMPC. In IFAC
nonlinear model predictive control conference, pages 496–501, April 2012.

[68] Frauke Oldewurtel, Alessandra Parisio, Colin N. Jones, Manfred Morari, Dimitrios Gyal-
istras, Markus Gwerder, Vanessa Stauch, Beat Lehmann, and Katharina Wirth. Energy
efficient building climate control using Stochastic Model Predictive Control and weather
predictions. In American Control Conference (ACC), pages 5100–5105, Baltimore, MD,
June 2010.

[69] Mike Botts, George Percivall, Carl Reed, and John Davidson. OGC R© Sensor Web En-
ablement: Overview and High Level Architecture. In Silvia Nittel, Alexandros Labrinidis,
and Anthony Stefanidis, editors, GeoSensor Networks, volume 4540 of Lecture Notes in
Computer Science, pages 175–190. Springer, 2008.

[70] Open Geospatial Consortium | OGC R©. http://www.opengeospatial.org/. Accessed: 2013-
08-08.

[71] Amit Sheth, Cory Henson, and Satya S. Sahoo. Semantic sensor web. Internet Computing,
IEEE, 12(4):78–83, July-Aug. 2008.

[72] Krishnaprasad Thirunarayan, Cory A. Henson, and Amin P. Sheth. Situation Awareness via
Abductive Reasoning from Semantic Sensor Data: A Preliminary Report. In International
Symposium on Collaborative Technologies and Systems (CTS ’09), pages 111–118, 2009.

[73] Hoan-Suk Choi and Woo-Seop Rhee. Distributed semantic sensor web architecture. In
TENCON 2012 – 2012 IEEE Region 10 Conference, pages 1–6, 2012.

[74] Dan Brickley, editor. Basic Geo (WGS84 lat/long) Vocabulary, 06 February 2004.
http://www.w3.org/2003/01/geo/. Accessed: 2013-08-08.

http://protege.stanford.edu/
http://protege.stanford.edu/
http://clarkparsia.com/pellet/
http://semanticweb.org/wiki/RacerPro
http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/
http://www.opengeospatial.org/
http://www.w3.org/2003/01/geo/

BIBLIOGRAPHY 157

[75] Jerry R. Hobbs and Pan Feng. Time Ontology in OWL. W3C Working Draft, 27 September
2004. http://www.w3.org/TR/2006/WD-owl-time-20060927/. Accessed: 2013-08-08.
Latest version available at http://www.w3.org/TR/owl-time/.

[76] W3C Semantic Sensor Network Incubator Group. http://www.w3.org/2005/Incubator/ssn/.
Accessed: 2013-08-08.

[77] Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcıa-Castro, Oscar Corcho,
Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent
Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam
Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth,
and Kerry Taylor. The SSN Ontology of the W3C Semantic Sensor Network Incubator
Group. Web Semantics: Science, Services and Agents on the World Wide Web, 17(0), 2012.

[78] Ontology:DOLCE+DnS Ultralite – odp. http://ontologydesignpatterns.org/wiki/Ontol-
ogy:DOLCE+DnS_Ultralite. Accessed: 2013-08-08.

[79] Amin Sheth. Citizen Sensing, Social Signals, and Enriching Human Experience. IEEE
Internet Computing, 13(4):87–92, 2009.

[80] Ken Wenzel, Jörg Riegel, Andreas Schlegel, and Matthias Putz. Semantic Web Based Dy-
namic Energy Analysis and Forecasts in Manufacturing Engineering. In Jürgen Hesselbach
and Christoph Herrmann, editors, Glocalized Solutions for Sustainability in Manufacturing,
pages 507–512. Springer, 2011.

[81] Liang Yu and Yong Liu. Using Linked data in a Heterogeneous Sensor Web: Challenges,
Experiments and Lessons Learned. In Workshop on Sensor Web Enablement (SWE), Banff,
Alberta, Canada, 2011.

[82] Robert G. Raskin and Michael J. Pan. Knowledge representation in the semantic web for
Earth and environmental terminology (SWEET). Computers & Geosciences, 31(9):1119–
1125, 2005.

[83] NASA Jet Propulsion Laboratory. SWEET Ontologies. http://sweet.jpl.nasa.gov/. Ac-
cessed: 2013-08-08.

[84] Space, Stars, Mars, Earth, Planets and More – NASA Jet Propulsion Laboratory.
http://www.jpl.nasa.gov/. Accessed: 2013-08-08.

[85] Rob Raskin. Semantic Web for Earth and Environmental Terminology (SWEET). 2003.

[86] Peter Fox, Deborah McGuinness, Robert Raskin, and Krishna Sinha. A Volcano Erupts:
Semantically Mediated Integration of Heterogeneous Volcanic and Atmospheric Data. In
Proceedings of the ACM first workshop on CyberInfrastructure: information management
in eScience (CIMS ’07), pages 1–6, Lisbon, Portugal, November 2007.

[87] Jian Zhong, Atilla Aydina, and Deborah L. McGuinness. Ontology of fractures. Journal
of Structural Geology, 31(3):251–259, 2009.

http://www.w3.org/TR/2006/WD-owl-time-20060927/
http://www.w3.org/TR/owl-time/
http://www.w3.org/2005/Incubator/ssn/
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
http://sweet.jpl.nasa.gov/
http://www.jpl.nasa.gov/

158 BIBLIOGRAPHY

[88] R. Ramachandran, S. Graves, and R. Raskin. Ontology re-engineering use case: Extending
SWEET to map climate and forecasting vocabulary terms. In AGU Spring Meeting
Abstracts, volume 1, page 2, 2006.

[89] Fact Sheet – NextGen. http://www.faa.gov/news/fact_sheets/news_story.cfm?newsid=
8145, February 2007. Accessed: 2013-08-08.

[90] FAA: Home. http://www.faa.gov/. Accessed: 2013-08-08.

[91] Aaron Braeckel. NextGen Network-Enabled Weather (NNEW). Briefing to NCAR and
NOAA Staff, 2009.

[92] NIMA TR 8350.2. Department of Defense World Geodetic System 1984: Its Definition
and Relationships with Local Geodetic Systems. DMA technical report. National Imagery
and Mapping Agency, third edition, 1997.

[93] Joshua Lieberman, Raj Singh, and Chris Goad. W3C Geospatial Vocabulary. W3C
Incubator Group Report 23 October 2007. http://www.w3.org/2005/Incubator/geo/XGR-
geo-20071023/. Accessed: 2013-08-08. Latest version available at http://www.w3.org/
2005/Incubator/geo/XGR-geo/.

[94] Joshua Lieberman, Raj Singh, and Chris Goad. W3C Geospatial Ontologies. W3C Incu-
bator Group Report 23 October 2007. http://www.w3.org/2005/Incubator/geo/XGR-geo-
ont-20071023/. Accessed: 2013-08-08. Latest version available at http://www.w3.org/
2005/Incubator/geo/XGR-geo-ont/.

[95] MUO – Measurement Units Ontology. Working Draft – DD April 2008. http://
idi.fundacionctic.org/muo/muo-vocab.html. Accessed: 2013-08-08.

[96] Luis Polo and Diego Berrueta. MUO – Measurement Units Ontology. Working Draft,
April 2008. http://mymobileweb.morfeo-project.org/specs/name. Accessed: 2013-08-08.

[97] Ontology of units of Measure (OM). http://www.wurvoc.org/vocabularies/om-1.6/. Ac-
cessed: 2013-08-08.

[98] Hajo Rijgersberg, Mark van Assem, and Jan Top. Ontology of Units of Measure and
Related Concepts. Semantic Web, 4(1):3–13, 2013.

[99] QUDT - Quantities, Units, Dimensions and Data Types in OWL and XML. September 11,
2011. http://www.qudt.org/. Accessed: 2013-08-08.

[100] OASIS Quantities and Units of Measure Ontology Standard (QUOMOS) TC.
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=quomos. Accessed:
2013-08-08.

[101] The Open Biological and Biomedical Ontologies. http://obofoundry.org/. Accessed:
2013-08-08.

http://www.faa.gov/news/fact_sheets/news_story.cfm?newsid=8145
http://www.faa.gov/news/fact_sheets/news_story.cfm?newsid=8145
http://www.faa.gov/
http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/
http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/
http://www.w3.org/2005/Incubator/geo/XGR-geo/
http://www.w3.org/2005/Incubator/geo/XGR-geo/
http://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/
http://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/
http://www.w3.org/2005/Incubator/geo/XGR-geo-ont/
http://www.w3.org/2005/Incubator/geo/XGR-geo-ont/
http://idi.fundacionctic.org/muo/muo-vocab.html
http://idi.fundacionctic.org/muo/muo-vocab.html
http://mymobileweb.morfeo-project.org/specs/name
http://www.wurvoc.org/vocabularies/om-1.6/
http://www.qudt.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=quomos
http://obofoundry.org/

BIBLIOGRAPHY 159

[102] The Open Biological and Biomedical Ontologies – Metrical units for use in conjunction
with PATO. http://obofoundry.org/cgi-bin/detail.cgi?id=unit. Accessed: 2013-08-08.

[103] unit-ontology – Ontology of Units and Measurements. http://code.google.com/p/unit-
ontology/. Accessed: 2013-08-08.

[104] Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101: A Guide to
Creating Your First Ontology. Stanford Knowledge Systems Laboratory Technical Report
KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, March
2001.

[105] Mike Uschold and Martin King. Towards a Methodology for Building Ontologies. In
Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction with
IJCAI-95, July 1995.

[106] Michael Grüninger and Mark S. Fox. Methodology for the Design and Evaluation of
Ontologies. In IJCAI95 Workshop on Basic Ontological Issues in Knowledge Sharing,
April 1995.

[107] Mariano Fernández, Asunción Gómez-Pérez, and Natalia Juristo. METHONTOLOGY:
from Ontological Art towards Ontological Engineering. In Proceedings of the AAAI97
Spring Symposium, pages 33–40, Stanford, USA, March 1997.

[108] T. N. Palmer. Predicting uncertainty in forecasts of weather and climate. Reports on
Progress in Physics, 63(2):71–116, 2000.

[109] Harvey Stern. The Accuracy of Weather Forecasts for Melbourne, Australia. Meteorologi-
cal Applications, 15:65–71, 2008.

[110] T.S. Glickman. Glossary of Meteorology. American Meteorological Society, 2000.

[111] Andrew Chatha. Fieldbus: The foundation for field control systems. Control Engineering,
41(6):77–80, 1994.

[112] IEC 61158 (1999-10): Digital data communication for measurement and control – Fieldbus
for use in industrial control systems. International Electrotechnical Commission, Geneve,
Switzerland, 1999.

[113] KNX Association [Official website]. http://www.knx.org/. Accessed: 2013-08-08.

[114] ISO/IEC 14543-3-1: Information technology – Home Electronic Systems (HES) Architec-
ture – Part 3-1: Communication layers – Application layer for network based control of
HES Class 1. International Organization for Standardization, Geneve, Switzerland, 2006.

[115] Smart Energy Starts Here – Echelon. http://www.echelon.com/. Accessed: 2013-08-08.

[116] LonWorks R©Standards. http://www.echelon.com/technology/lonworks/standards-applica-
tions.htm. Accessed: 2013-08-08.

http://obofoundry.org/cgi-bin/detail.cgi?id=unit
http://code.google.com/p/unit-ontology/
http://code.google.com/p/unit-ontology/
http://www.knx.org/
http://www.echelon.com/
http://www.echelon.com/technology/lonworks/standards-applications.htm
http://www.echelon.com/technology/lonworks/standards-applications.htm

160 BIBLIOGRAPHY

[117] ISO/IEC 14908-1: Information technology – Control network protocol – Part 1: Protocol
stack. International Organization for Standardization, Geneve, Switzerland, 2008.

[118] BACnet Website. http://www.bacnet.org/. Accessed: 2013-08-08.

[119] ISO 16484-1: Building automation and control systems – Part 1: Overview and vocabulary.
International Organization for Standardization, Geneve, Switzerland, 2010.

[120] LCN – Gebäudeleittechnik – Intelligente Steuerungen für Ihr Gebäude. http://www.lcn.de/.
Accessed: 2013-08-08.

[121] COMMERCIAL WEATHER VENDOR WEB SITES SERVING THE U.S. http://
www.nws.noaa.gov/im/more.htm. Accessed: 2013-08-08.

[122] Five Best Weather Web Sites. http://lifehacker.com/5897973/five-best-weather-web-sites.
Accessed: 2013-08-08.

[123] Comparing Weather APIs | Michael Welburn. http://michaelwelburn.com/2011/11/02/
comparing-weather-apis/. Accessed: 2013-08-08.

[124] W3C Document Object model. http://www.w3.org/DOM/. Accessed: 2013-08-08.

[125] SAX. http://www.saxproject.org/. Accessed: 2013-08-08.

[126] Internet Engineering Task Force, D. Crockford. The application/json Media Type for
JavaScript Object Notation (JSON). RFC 4627 (Informational), July 2006.

[127] Maven – Json-lib::Welcome. http://json-lib.sourceforge.net/. Accessed: 2013-08-08.

[128] FLEXJSON. http://flexjson.sourceforge.net/. Accessed: 2013-08-08.

[129] google-gson – A Java library to convert JSON to Java objects and vice-versa. https://
code.google.com/p/google-gson/. Accessed: 2013-08-08.

[130] PHP: JSON – Manual. http://www.php.net/manual/en/book.json.php. Accessed: 2013-08-
08.

[131] Internet Engineering Task Force, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFCs 2817, 5785, 6266, 6585.

[132] Apache HttpComponents
TM

. http://hc.apache.org/. Accessed: 2013-08-08.

[133] Google – Official Blog: Spring cleaning in summer. http://googleblog.blogspot.co.at/
2012/07/spring-cleaning-in-summer.html. Accessed: 2013-08-08.

[134] Wetter und Klima – Deutscher Wetterdienst – Startseite. http://www.dwd.de/. Accessed:
2013-08-08.

http://www.bacnet.org/
http://www.lcn.de/
http://www.nws.noaa.gov/im/more.htm
http://www.nws.noaa.gov/im/more.htm
http://lifehacker.com/5897973/five-best-weather-web-sites
http://michaelwelburn.com/2011/11/02/comparing-weather-apis/
http://michaelwelburn.com/2011/11/02/comparing-weather-apis/
http://www.w3.org/DOM/
http://www.saxproject.org/
http://json-lib.sourceforge.net/
http://flexjson.sourceforge.net/
https://code.google.com/p/google-gson/
https://code.google.com/p/google-gson/
http://www.php.net/manual/en/book.json.php
http://hc.apache.org/
http://googleblog.blogspot.co.at/2012/07/spring-cleaning-in-summer.html
http://googleblog.blogspot.co.at/2012/07/spring-cleaning-in-summer.html
http://www.dwd.de/

BIBLIOGRAPHY 161

[135] National Digital Forecast Database XML/SOAP Service – NOAA’s National Weather
Service. http://graphical.weather.gov/xml/. Accessed: 2013-08-08.

[136] ADDS METARs. http://www.aviationweather.gov/adds/metars/. Accessed: 2013-08-08.

[137] The Weather Channel. Weather On Your Site. http://www.weather.com/services/
xmloap.html. Accessed: 2012-09-15.

[138] API | Weather Underground. http://www.wunderground.com/weather/api/. Accessed:
2013-08-08.

[139] World Weather Online R©– Global weather forecast and weather content provider.
http://www.worldweatheronline.com. Accessed: 2013-08-08.

[140] Yahoo! Weather – Yahoo! Developer Network. http://developer.yahoo.com/weather/.
Accessed: 2013-08-08.

[141] api.met.no. http://api.yr.no/. Accessed: 2013-08-08.

[142] NOAA – National Oceanic and Atmospheric Administration. http://www.noaa.gov/.
Accessed: 2013-08-08.

[143] SYNOP Data Format (FM-12) – Surface Synoptic Observations. http://weather.
unisys.com/wxp/Appendices/Formats/SYNOP.html. Accessed: 2013-08-08.

[144] World Meteorological Organization Homepage | WMO. http://www.wmo.int/pages/
index_en.html. Accessed: 2013-08-08.

[145] RSS 2.0 Specification (RSS 2.0 at Harvard Law). http://cyber.law.harvard.edu/rss/rss.html.
Accessed: 2013-08-08.

[146] Remote JSON – JSONP. http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/.
Accessed: 2013-08-08.

[147] Internet Engineering Task Force, Y. Shafranovich. Common Format and MIME Type for
Comma-Separated Values (CSV) Files. RFC 4180 (Informational), October 2005.

[148] Aeronautical Information Manual: Official Guide to Basic Flight Information and ATC
Procedures. Federal Aviation Administration, Washington, DC.

[149] INTERNATIONAL CIVIL AVIATION ORGANIZATION – A United Nations Specialized
Agency. http://www.icao.int/Pages/default.aspx. Accessed: 2013-08-08.

[150] PyMETAR. http://www.schwarzvogel.de/software-pymetar.shtml. Accessed: 2013-08-08.

[151] matthew feldt – projects – java metar parsing utility. http://www.feldt.com/work/projects/
metar/. Accessed: 2013-08-08.

http://graphical.weather.gov/xml/
http://www.aviationweather.gov/adds/metars/
http://www.weather.com/services/xmloap.html
http://www.weather.com/services/xmloap.html
http://www.wunderground.com/weather/api/
http://www.worldweatheronline.com
http://developer.yahoo.com/weather/
http://api.yr.no/
http://www.noaa.gov/
http://weather.unisys.com/wxp/Appendices/Formats/SYNOP.html
http://weather.unisys.com/wxp/Appendices/Formats/SYNOP.html
http://www.wmo.int/pages/index_en.html
http://www.wmo.int/pages/index_en.html
http://cyber.law.harvard.edu/rss/rss.html
http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/
http://www.icao.int/Pages/default.aspx
http://www.schwarzvogel.de/software-pymetar.shtml
http://www.feldt.com/work/projects/metar/
http://www.feldt.com/work/projects/metar/

162 BIBLIOGRAPHY

[152] Internet Engineering Task Force, J. Postel and J. Reynolds. File Transfer Protocol. RFC
959 (INTERNET STANDARD), October 1985. Updated by RFCs 2228, 2640, 2773, 3659,
5797.

[153] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[154] Martin Gudgin, Mark Hadley, Noah Mendelsohn, Moreau Jean-Jaques, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition). W3C Recommendation, 27 April 2007.
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/. Accessed: 2013-08-08. Latest
version available at http://www.w3.org/TR/soap12-part1/.

[155] Creative Commons. Creative Commons Attribution 3.0 Unported. http://creative-
commons.org/licenses/by/3.0/. Accessed: 2013-08-09.

[156] B<LocationforecastLTS> – Weather forecast for a specified place, long term support.
http://api.yr.no/weatherapi/locationforecastlts/1.1/documentation. Accessed: 2013-08-23.

[157] B<Locationforecast> – Weather forecast for a specified place. http://api.yr.no/weatherapi/
locationforecast/1.8/documentation. Accessed: 2013-08-08.

[158] Schema to be used for presenting weather parameters for specific locations.
http://api.yr.no/weatherapi/locationforecast/1.8/schema. Accessed: 2013-08-08.

[159] B<Sunrise> – When does the sun rise and set for a given place. http://api.yr.no/
weatherapi/sunrise/1.0/documentation. Accessed: 2013-08-08.

[160] Ibrahim Reda and Afshin Andreas. Solar Position Algorithm for Solar Radiation Applica-
tions. Solar Energy, 76(5):577–589, 2004.

[161] Manuel Blanco-Muriel, Diego C. Alarcón-Padilla, Alarcón-Padilla López-Moratalla, and
Martín Lara-Coira. COMPUTING THE SOLAR VECTOR. Solar Energy, 70(5):431–441,
2001.

[162] Plataforma Solar de Almería. http://www.psa.es/. Accessed: 2013-08-08.

[163] Mark G Lawrence. The Relationship between Relative Humidity and the Dewpoint
Temperature in Moist Air: A Simple Conversion and Applications. Bulletin of the American
Meteorological Society, 86:225–233, 2005.

[164] COESA: US Commission/Stand Atmosphere (Compiler), National Oceanic & Atmospheric
Admin (Collaborator), National Aeronautics & Space Admin (Collaborator), United States
Air Force (Collaborator). U.S. Standard Atmosphere, 1976 (NOAA Document S/T 76-1562).

[165] María Poveda, Mari Carmen Suárez-Figueroa, and Asunción Gómez-Pérez. Common
pitfalls in ontology development. In Proceedings of the Current topics in artificial intelli-
gence, and 13th conference on Spanish association for artificial intelligence, CAEPIA’09,
pages 91–100, Seville, Spain, 2010.

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/soap12-part1/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://api.yr.no/weatherapi/locationforecastlts/1.1/documentation
http://api.yr.no/weatherapi/locationforecast/1.8/documentation
http://api.yr.no/weatherapi/locationforecast/1.8/documentation
http://api.yr.no/weatherapi/locationforecast/1.8/schema
http://api.yr.no/weatherapi/sunrise/1.0/documentation
http://api.yr.no/weatherapi/sunrise/1.0/documentation
http://www.psa.es/

BIBLIOGRAPHY 163

[166] Michael Gruninger and Mark S. Fox. The Role of Competency Questions in Enterprise
Engineering. In Proceedings of the IFIP WG5.7 Workshop on Benchmarking – Theory
and Practice, Trondheim, Norway, 1994.

[167] Antonio De Nicola, Michele Missikoff, and Roberto Navigli. A software engineering
approach to ontology building. Information Systems, 34:258–275, April 2009.

[168] Keshk Mohamed and Sally Chambless. Model Driven Ontology: A New Methodology for
Ontology Development. November 2008.

[169] Mari-Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta, and Aldo Gangemi.
Ontology Engineering in a Networked World. Springer, Berlin, 2012.

[170] Guus Schreiber, Bob Wielinga, and Wouter Jansweijer. The KACTUS View on the ’O’
Word. In IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing, pages
159–168, 1995.

[171] Bill Swartout, Ramesh Patil, Kevin Knight, and Tom Russ. Toward Distributed Use of
Large-Scale Ontologies. In Proceedings of the 10th. Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Alberta, Canada, 1996.

[172] Hele-Mai Haav. A Semi-automatic Method to Ontology Design by Using FCA. In
Václav Snásel and Radim Belohlávek, editors, Proceedings of the CLA 2004 International
Workshop on Concept Lattices and their Applications, September 23-24, 2004, volume 110
of CEUR Workshop Proceedings, Ostrava, Czech Republic, 2004.

[173] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1st edition, 1999.

[174] M. Fernández López. Overview of Methodologies for Building Ontologies. In V.R.
Benjamins, B. Chandrasekaran, A. Gómez-Pérez, N. Guarino, and M. Uschold, editors,
Proceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving Methods
(KRR5), Stockholm, Sweden, August 1999.

[175] Mariano Fernández-López and Asunción Gómez-Pérez. Overview and analysis of method-
ologies for building ontologies. The Knowledge Engineering Review, 17(2):129–156, June
2002.

[176] Dean Jones, Trevor Bench-Capon, and Pepijn Visser. Methodologies for Ontology Devel-
opment. In IT&KNOWS Conference, XV IFIP World Computer Congress, pages 62–75,
Budapest, August 1998.

[177] Oscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez. Methodologies,
tools and languages for building ontologies: where is their meeting point? Data &
Knowledge Engineering, 46(1):41–64, July 2003.

[178] Mike Uschold, Martin King, Stuart Moralee, and Yannis Zorgois. The Enterprise Ontology.
The Knowledge Engineering Review, 13:31–89, April 1998.

164 BIBLIOGRAPHY

[179] Alexander Osterwalder and Yves Pigneur. An e-Business Model Ontology for Modeling
e-Business. In 15th Bled Electronic Commerce Conference – eReality: Constructing the
e-Economy, Bled, Slovenia, June 2002.

[180] Rinke Hoekstra, Joost Breuker, Marcello Di Bello, and Alexander Boer. LKIF Core:
Principled Ontology Development for the Legal Domain. In Proceedings of the 2009
conference on Law, Ontologies and the Semantic Web: Channelling the Legal Information
Flood, pages 21–52, Amsterdam, The Netherlands, 2009.

[181] Mario Gutiérrez A., Alejandra García-Rojas, Daniel Thalmann, Frederic Vexo, Laurent
Moccozet, Nadia Magnenat-Thalmann, Michela Mortara, and Michela Spagnuolo. An
ontology of virtual humans. The Visual Computer, 23(3):207–218, 2007.

[182] Nicolas Anquetil, Káthia M. de Oliveira, Kleiber D. de Sousa, and Márcio G. Batista Dias.
Software maintenance seen as a knowledge management issue. Information and Software
Technology, 49(5):515–529, May 2007.

[183] Li-Yen Shue, Ching-Wen Chen, and Weissor Shiue. The development of an ontology-
based expert system for corporate financial rating. Expert Systems with Applications,
36(2):2130–2142, 2009.

[184] Muhammad Shahab Siddiqui, Zubair A. Shaikh, and Abdul Rahman Memon. Towards the
Development of Human Community Ontology. In Proceedings of the 2009 WRI World
Congress on Software Engineering, volume 3 of WCSE ’09, pages 8–12, Washington, DC,
2009.

[185] Jeffrey Undercoffer, Anupam Joshi, and John Pinkston. Modeling Computer Attacks: An
Ontology for Intrusion Detection. In Giovanni Vigna, Erland Jonsson, and Christopher
Krügel, editors, 6th International Symposium on Recent Advances in Intrusion Detection,
volume 2820 of Lecture Notes in Computer Science, pages 113–135, 2003.

[186] Joanne S. Luciano. PAX of mind for pathway researchers. Drug Discovery Today,
10(13):937–942, July 2005.

[187] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

[188] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Pearson Higher Education, 2nd edition, 2004.

[189] Rainer Ruggaber. Athena – Advanced Technologies for Interoperability of Heterogeneous
Enterprise Networks and their Applications.

[190] M. Al-Yahya, H. Alkhalifa, A. Bahanshal, I. Alodah, and N. Al-Helwah. An Ontological
Model for Representing Computational Lexicons – A Componential Based Approach. In
Proceedings of the 6th IEEE International Conference on Natural Language Processing
and Knowledge Engineering, IEEE NLP-KE ’10, pages 1–6, Beijing, China, August 2010.

BIBLIOGRAPHY 165

[191] Gregorio D’Agostino and Antonio De Nicola. Towards Semantic Profiling in Social
Networks.

[192] Michele Missikoff and Francesco Taglino. A Semantic Cooperation and Interoperability
Platform for the European Chambers of Commerce. In Tomas Vitvar, Vassilios Peristeras,
and Konstantinos Tarabanis, editors, Semantic Technologies for E-Government, pages
129–149. Springer, 2010.

[193] LD-CAST Project – Home. http://www.ldcastproject.com/. Accessed: 2013-08-08.

[194] Oscar Corcho, Mariano Fernández-López, Asunción Gómez-Pérez, and Angel López-
Cima. Building Legal Ontologies with METHONTOLOGY and WebODE. In Richard
Benjamins, Pompeu Casanovas, Joost Breuker, and Aldo Gangemi, editors, Law and the
Semantic Web, number 3369 in LNAI, pages 142–157. Springer, 2005.

[195] Mariano Fernández López, Asunción Gómez-Pérez, Juan Pazos Sierra, and Alejandro Pa-
zos Sierra. Building a Chemical Ontology Using Methontology and the Ontology Design
Environment. Intelligent Systems and their Applications, IEEE, 14(1):37–46, January
1999.

[196] Jinsoo Park, Kimoon Sung, and Sewon Moon. Developing Graduation Screen Ontology
Based on the METHONTOLOGY Approach. Proceedings of the 2008 Fourth International
Conference on Networked Computing and Advanced Information Management, 2:375–380,
2008.

[197] Yuslina Zakaria, Safaai Deris, and Muhammad Razib Othman. The Development of
Ontology for Metabolic Pathways Using METHONTOLOGY. In Proceedings of the
Postgraduate Annual Research Seminar 2005, pages 291–295, 2005.

[198] Fred Freitas, Zacharias Candeias Jr, and Heiner Stuckenschmidt. A new Usage for
Semantic Technologies for eGovernment: Checking Official Documents’ Consistency.
Electronic Journal of e-Government, 8(2):121–134, 2010.

[199] Andrés Iglesias-Pérez, Marino Linaje, Juan Carlos Preciado, Fernando Sánchez-Figueroa,
Elena Gómez-Martínez, Rafael González-Cabero, and José Ángel Martínez-Usero. A
Context-Aware Semantic Approach for the Effective Selection of an Assistive Software.

[200] Richard A. Smith. Designing a cartographic ontology for use with expert systems. In
Proceedings: A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with ASPRS/CaGIS 2010 Fall Specialty Conference, Orlando, Florida,
November 2010.

[201] Marlos Silva, Elias Endhe, Evandro Costa, Ig Ibert Bittencourt, Heitor Barros, Lean-
dro Dias da Silva, Alan Pedro da Silva, and Douglas Véras. Combining Methontology and
a Ontology Driven Approach to Build an Educational Ontology. IEEE Multidisciplinary
Engineering Education Magazine, 6(3):11–18, September 2011.

http://www.ldcastproject.com/

166 BIBLIOGRAPHY

[202] Evandro de Barros Costa. Um modelo de ambiente interativo de aprendizagem baseado
numa arquitetura multi-agentes. PhD thesis, Universidade Federal da Paraíba, 1997 (in
Portugese).

[203] L. M. Vilches-Blázquez, J. A. Ramos, F. J. López-Pellicer, O. Corcho, and J. Nogueras-
Iso. An approach to comparing different ontologies in the context of hydrographical
information. In Information fusion and geographic information systems, pages 193–207.
Springer, May 2009.

[204] Asunción Gómez-Pérez, Mariano Fernández, and Antonio J. de Vicente. Towards a Method
to Conceptualize Domain Ontologies. In ECAI-96 Workshop on Ontological Engineering,
ECAI-96 Workshop Proceedings, pages 41–52, 1996.

[205] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Boris Villazón-Terrazas. How
to write and use the Ontology Requirements Specification Document. In Robert Meersman,
Tharam Dillon, and Pilar Herrero, editors, On the Move to Meaningful Internet Systems:
OTM 2009, Lecture Notes in Computer Science, pages 966–982. Springer, 2009.

[206] Barry W. Boehm. A Spiral Model of Software Development and Enhancement. Computer,
21(5):61–72, May 1988.

[207] Joachim Bayer and Dirk Muthig. A View-Based Approach for Improving Software Docu-
mentation Practices. In Proceedings of the 13th Annual IEEE International Symposium
and Workshop on, Engineering of Computer Based Systems (ECBS ’06), pages 278–287,
2006.

[208] American Meteorological Society Home Page. http://www.ametsoc.org/. Accessed: 2013-
08-08.

[209] Pellint: An Ontology Repair Tool – Clark & Parsia: Thinking Clearly. http://weblog.
clarkparsia.com/2008/07/02/pellint-an-ontology-repair-tool/. Accessed: 2013-08-08.

[210] JUnit. A programmer-oriented testing framework for Java. http://junit.org/. Accessed:
2013-08-08.

[211] Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. To CamelCase or
under_score. In The 17th IEEE International Conference on Program Comprehension,
ICPC 2009, pages 158–167, 2009.

[212] Javadoc Tool Home Page. http://www.oracle.com/technetwork/java/javase/
documentation/index-jsp-135444.html. Accessed: 2013-08-08.

[213] Apache Jena. http://jena.apache.org/. Accessed: 2013-08-08.

[214] Cobertura. http://cobertura.sourceforge.net/. Accessed: 2013-08-08.

[215] Apache Ant
TM

. http://ant.apache.org/. Accessed: 2013-08-08.

http://www.ametsoc.org/
http://weblog.clarkparsia.com/2008/07/02/pellint-an-ontology-repair-tool/
http://weblog.clarkparsia.com/2008/07/02/pellint-an-ontology-repair-tool/
http://junit.org/
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://jena.apache.org/
http://cobertura.sourceforge.net/
http://ant.apache.org/

BIBLIOGRAPHY 167

[216] JAR File Specification. http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html.
Accessed: 2013-08-08.

[217] Properties (Java Platform SE 7). http://docs.oracle.com/javase/7/docs/api/java/util/
Properties.html#load(java.io.Reader). Accessed: 2013-08-08.

[218] Michiel Hazewinkel. Encyclopidia of Mathematics. Kluwer, 1994.

[219] Plataforma Solar de Almería - PSA Algorithm Files. http://www.psa.es/sdg/sunpos.htm.

[220] ARK | Intel R©Core
TM

2 Quad Processor Q6600 (8M Cache, 2.40 GHz, 1066 MHz FSB).
http://ark.intel.com/products/29765. Accessed: 2013-08-08.

[221] The world’s most popular free OS | Ubuntu. http://www.ubuntu.com/. Accessed: 2013-08-
08.

[222] Smart Meter und Energieeffizienz. http://www.e-control.at/de/konsumenten/news/themen-
archiv/strom-news/smart-meter-und-energieeffizienz (in German). Accessed: 2013-08-18.

[223] Charbel Aoun. The Smart City Cornerstone: Urban Efficiency. Schneider Electric White
Paper.

[224] Net!Works European Technology Platform. Expert Working Group on Smart Cities
Applications and Requirements. White Paper. May 2011.

http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load(java.io.Reader)
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load(java.io.Reader)
http://www.psa.es/sdg/sunpos.htm
http://ark.intel.com/products/29765
http://www.ubuntu.com/
http://www.e-control.at/de/konsumenten/news/themen-archiv/strom-news/smart-meter-und-energieeffizienz
http://www.e-control.at/de/konsumenten/news/themen-archiv/strom-news/smart-meter-und-energieeffizienz

	Acknowledgements
	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Problem statement and goal
	Methodological approach
	Outline

	Existing work
	Foundations
	Ontologies
	OWL

	ThinkHome
	Ontologies for weather data
	Semantic Sensor Web
	SSN Ontology
	SWEET
	NextGen

	Related ontologies
	Location data
	Date and time
	Units of measurements

	Conclusion

	Weather data
	Weather information
	Sensor data
	Fieldbus systems
	KNX sensors

	Service data
	Available Internet services
	Summary

	Weather data API of yr.no
	Position of the sun
	Conclusion

	Methodologies for developing ontologies
	Evaluating ontology development methodologies
	The ontology development approaches
	Methodology by Uschold and King
	Description
	Applications
	Analysis

	Methodology by Grüninger and Fox (TOVE)
	Description
	Applications
	Analysis

	Ontology 101
	Description
	Applications
	Analysis

	The UPON methodology
	Description
	Applications
	Analysis

	METHONTOLOGY
	Description
	Applications
	Analysis

	Summary

	METHONTOLOGY
	Ontology development process and life cycle
	The METHONTOLOGY approach
	Specification
	Knowledge Acquisition
	Conceptualisation
	Formalisation
	Integration
	Implementation
	Evaluation
	Documentation
	Maintenance

	Conclusion

	The SmartHomeWeather ontology
	Conventions
	Specification
	Knowledge Acquisition
	Conceptualisation
	Glossary of Terms
	Concept-classification trees
	Weather condition
	Weather phenomenon
	Weather report
	Weather source
	Weather state

	Binary relations diagram
	Concept dictionaries
	Binary relations table
	Instance attributes table
	Class attributes table
	Instances table

	Integration
	Implementation
	Imported ontologies
	Reasoning

	Evaluation
	Non-functional requirements
	Functional requirements

	SPARQL and SWRL
	Maximum and minimum values
	Weather states satisfying certain conditions
	Rising and falling values of weather phenomena over time

	The Weather Importer
	The data model
	The application
	fetch mode
	timestamps mode
	remove mode
	turtle mode

	Unit tests

	Conclusion
	Summary
	Outlook
	Shortcomings in the current version
	Further uses of data provided by SmartHomeWeather

	Tables and listings
	Conceptualisation tables for SmartHomeWeather
	Output of Weather Importer in Turtle syntax

	Glossary
	Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

